摘 要:数控技术是集微电子、计算机、信息处理、自动检测、自动控制等高新技术于一体,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集成化、智能化起着举足轻重的作用。目前,数控技术正在发生根本性变革,由专用型封闭式开环控制模式向通用型开放式实时动态全闭环控制模式发展。在集成化基础上,数控系统实现了超薄型、超小型化;在智能化基础上,综合了计算机、多媒体、模糊控制、神经网络等多学科技术,数控系统实现了高速、高精、高效控制,加工过程中可以自动修正、调节与补偿各项参数,实现了在线诊断和智能化故障处理;在网络化基础上,CAD/CAM与数控系统集成为一体,机床联网,实现了中央集中控制的群控加工。由于机械的数控智能得到了较快的发展,所以,机械制造领域的数控智能系统得到了广泛的应用。本文对数控智能在机械制造领域中的应用进行简单的研究和分析。
关键词:数控智能;机械制造;领域;应用;研究
1.数控智能在机械制造领域中的应用
智能控制机械制造主要包括以下四个部分:机械设计;机械制造;机械电子;机械系统故障诊断。
1.1 机械设计
机械设计在现实生产中是指技术人员对想要设计物体的一个模型进行综合和分析的过程,这个过程包括大量高精度的计算、分析、绘图等精确数值计算工作,同时还需要结合多方面的知识,在通过设计人员自身丰富的实践经验,进行多元综合,最终做出最佳的设计。但是在实际的设计中,很难用精确数值计算的方法来建立准确数据模型,而现在流行的CAD制图技术对这一部分工作也是无能为力的。这就要求 CAD/CAM的操作系统具有智能性,利用计算机系统把一些数值数据处理扩展到非数值数据处理,包括把数据数值知识与实际操作中的经验进行集成、推理和决策,使机械设计过程自动化智能化,弥补设计专家在现实中对机械设计过程中由于人为因素造成的不足。
1.2 机械制造
在机械生产制造中,人们首先要做的是确定机械生产计划,制定机械生产计划就是指从多种因素(设计、制造、生产等)的组合中选出最能满足所有约束条件(生产成本、设计图形、生产工序等)的最佳方案。这些过程是很难用数学模型来准确地表示出来的。数字化智能化技术一方面使数字化制造装备等得到快速发展,大幅度提升生产系统的功能、性能和自动化程度。另一方面这些技术集成可形成柔性制造单元、数字化车间乃至数字化工厂,使生产系统的柔性自动化不断提高,并想着具有感知、决策、执行能功能特征的智能化系统发展。目前以智能机器人为典型代表的智能制造装备已经开始在某些领域得到应用。
1.3 机械电子
机械电子系统结构比较简单,元件和运动部件较少,高性能,但是其系统的内部结构非常复杂。传统的数学解析的方法固然严密、精确,但是只能适用于相对比较简单的电子系统,对于那些比较复杂的系统是不能给出数学解析式的,这样就只能通过烦琐的操作系统来完成。由于智能化的处理是以知识信息为基础进行的推理和计算,这种推理具有复杂性、不确定性和模糊性,而且这种智能化的处理一般不存在已知的算法(传统数学公式化的方法),所以,对不能用传统的数学解析方法解决的问题,人工智能提供了新的解决思路和方法。一般通过人工智能建立的系统有两种方法:神经网络系统和模糊推理系统。目前只有智能系统可以适用于相对比较复杂的电子系统。
1.4 机械系统故障诊断
所谓的机械系统故障的诊断,就是指根据电子系统出现的一些不正常的现象,按照一定的法则,推论出产生问题的原因,找出设备出现故障的所在的部位。故障诊断包括三个方面的内容:故障监测,故障分析和处理决策。但是由现象推出故障原因是一个复杂的推理过程,需要根据维护保修人员多年积累的实际经验,才能得出正确的结论,假如把人工智能的方法应用于机械故障诊断,发展智能化的机械故障诊断技术,是机械故障诊断的一个新途径。机械故障中的人工智能诊断方法主要包括专家系统、人工神经网络,模糊集理论等。
2.数控智能机械制造领域中的应用方法
2.1 专家系统
专家系统是计算机的一种智能程序,这种程序运用知识和推理步骤来解决出现只有专家才能解决的一些比较复杂的问题。智能控制专家系统的框架主要由五个部分组成:知识库,综合数据库,推理机,用户接口和系统输出。
2.2 人工神经网络
人工神经网络是指只智能控制系统摸拟的生物的激励系统,将一系列输入通过神经网络产生输出。这里的输出、输入都是标准化的量,输出是输入的非线性函数,其值可由连接各神经元的权重改变,以获得期望的输出值。
2.3 模糊集理论
人在认知世界的时候,出现一些不确定的事物的时候,就会对所获得的信息进行一定的模糊化处理,以此来减少问题的复杂程度。模糊集理论是指将经典的集合理论模糊化,并引入语言变量和近似推理的模糊逻辑,是一种具有完整的推理体系的智能技术。一般的模糊系统的结构与专家系统的结构比较类似,由模糊知识库、模糊推理机和人机界面等几个部分组成,可以这么说模糊系统是模糊理论与专家系统结构的结合体。
3.智能控制在机械制造系统中的发展趋势
智能控制的实施主要有四个部分,虽然这四个部分在机械领域都有不同程度的应用,但各自使用的时候都存在一定的局限。所以目前,要找到一种普遍的有效的方法把这四个部分有效的结合到一起应用于机械制造系统的各个领域,因此,从这可以看出数控智能组合将成为机械制造系统新的发展趋势。
4.结语
综合起来,数字化智能化技术可以对产业的模式进行创新升级。以数字化技术为基础,在互联网、物联网、云计算、大数据等技术的强力支持下,制造业的产业模式将发生根本性的变化。因此,无论从哪个角度考虑,“制造业数字化智能化”都是新一轮工业革命的核心技术。
参考文献:
[1]陈海勇,朱诗兵,李冲.军事物联网的需求分析[J].物联网技术,2011(5):53-57
[2]王晓静,张晋.物联网研究综述[J].辽宁大学学报:自然科学版,2010,37(1):37-39.
[3]刘若冰.物联网的研究进展与未来展望[J].物联网技术,2011(5):58-62.
作者简介:
王振宇(1972.2—),河北省石家庄市人,毕业于河北工学院机械系,从事机电行业20余年,拥有多年机械理论及实际工作经验。