当前位置:首页 > 专题范文 > 公文范文 > 精确曝气系统在临平净水厂的应用

精确曝气系统在临平净水厂的应用

发布时间:2022-11-06 12:50:04 来源:网友投稿

设计选用6台鼓风机,4用2备,分为两组系统,分别对应两座生物反应池。

3.2 AVS技术方案

在对临平净水厂工程的设计工艺、设备仪表以及控制策略进行充分调研的基础上制定适合的AVS系统方案,使AVS系统方案能够完全匹配该厂的运行工况,实现精确曝气控制。并在此基础上,实现微生物生化环境的稳定,进而促进处理工艺的稳定运行,提高出水水质的达标率。

3.2.1 AVS溶解氧控制策略。

AVS的溶解氧控制策略有两种:(1)溶解氧控制目标设定值为恒定值;(2)溶解氧控制目标设定值为动态值。控制策略可根据临平净水厂程的仪表配置等实际情况,由工作人员自主选择。

①溶解氧控制目标设定值为恒定值

在溶解氧控制目标设定值为恒定值的控制策略下,工作人员可根据经验或出水水质等情况人工自主设定溶解氧控制目标值,一旦该设定值确定,AVS将根据进水水质、进水水量、生化池污泥浓度、生化池液位、该溶解氧设定值等信号,实时动态计算出各溶解氧控制区的需气量及总需气量,并通过调整鼓风机的启停、进出口导叶开度及各曝气支管的电动空气调节阀的开度,使需气量与供气量相吻合,从而实现生化池各控制区的实际溶解氧在该溶解氧控制目标设定值上下波动,直至该溶解氧设定值被修改。

②溶解氧控制目标设定值为动态值

溶解氧控制目标设定值为动态值的控制方式,其内回路是溶解氧控制器,即溶解氧-曝气量控制回路;其外回路是氨氮-溶解氧设定值控制回路,两个回路通过溶解氧设定值关联在一起。在该控制逻辑中,首先借助于数学模型求解将控制单元的实际氨氮值稳定在其目标值所需要的溶解氧,将该溶解氧值设定为控制单元的溶解氧设定值;然后,通过溶解氧控制器调节鼓风机和曝气量,使得控制单元的溶解氧稳定在设定值附近。其控制原理如下图所示:

污水生化处理系统中影响氨氮降解的因素主要有温度、溶解氧、停留时间、污泥龄或污泥浓度等,在这些因素中,对于开放性的系统,只有溶解氧能够被控制。因此,氨氮控制系统的原理是根据时刻变化的进水流量、进水COD和进水氨氮等,时刻计算出降解这些氨氮所需的曝气量,以使出水COD和氨氮能够稳定达标,故在该控制策略与溶解氧控制目标设定值为恒定值的控制方式相比,需要在生化池配置在线氨氮测定仪。

3.2.2 AVS数据信号要求。

AVS采集多种设备仪表的信号,通过内置的精确曝气流量数学模型实时计算各溶解氧控制区的实际需要曝气量,并对鼓风机进行调节设定。

3.2.3 AVS鼓风机控制。

临平净水厂工程设计选用6台鼓风机,4用2备,安装在鼓风机房内,采用进出口导叶的开度控制方式调节气量。每台鼓风机配置一个单元控制器(LCP),设置一台主控柜(MCP)来负责鼓风机投入启动或关闭台数及导叶的开度调节等,并能依据相关的信号做完整的控制动作。

本方案采用总流量或总压力的调节控制方式,根据AVS系统动态计算出来的总风量,通过鼓风机主控柜MCP自动控制所有鼓风机的启停、频率,使鼓风机出口风量及压力满足需求,避免进水负荷高峰时的曝气不足和进水负荷低谷时的曝气过量,实现了曝气过程的精细化、稳定化控制,按需曝气节约了曝气能耗。

鼓风机的控制示意图如下所示:

为了鼓风机防止出现喘振,在流量调节时充分考虑调节过程、液位变化对管路压力的冲击影响,优化设置流量调节步长,在达到流量调节的同时避免由压力冲击过大造成鼓风机喘振。

3.2.4 AVS溶解氧控制区的划分。

AVS对曝气的精细控制分为时间与空间两个维度,在空间上对生化池进行溶解氧分区控制,满足不同工艺段对不同曝气量的需求;在时间上随进水负荷变化动态设定曝气量,满足不同进水趋势下的曝气需求。

根据临平净水厂工程的工艺设计,曝气管路为树状分布。根据该设计,本精确曝气系统将单座生物反应池划分成4个溶解氧控制区,实现对溶解氧的精确控制。单座池溶解氧控制区如下图所示:

3.2.5 AVS系统阀门、仪表系统配置。

针对临平净水厂的工艺流程,此AVS设计方案在每个溶解氧控制区配置1台在线溶解氧仪表,在DN600和DN500的曝气支管上配置1台热式气体流量计和1台电动线性调节阀。另外,由于AVS需要MLSS、压力和液位等反馈信号来补偿曝气量计算及调节,因此,还需增加MLSS仪、压力变送器等仪表。单座生化池的仪表安装位置如图4所示。AVS系统设备及仪表配置如下:

4 .结语

AVS系统可以为污水厂带來以下效益:

4.1 更稳定的溶解氧控制

由于好氧段水流方向上有机负荷不同,对溶解氧的需求量也不同,因此,实现好氧池中对不同区域内不同DO浓度的控制能力是衡量控制系统性能的重要指标之一。AVS能把曝气池内DO控制在0.5~5.0 mg/L之间的任一设定值,控制精度在设定值的±0.5 mg/L范围内。

4.2 更佳的出水水质

AVS运行后,DO控制的稳定度大大提高,使微生物生化环境的稳定性随之提高,进而促进生化处理工艺的稳定运行,提高出水水质的达标率及稳定性。

采用AVS后,污水厂出水氨氮及总氮的达标率及稳定性均有所提高,而出水总氮的控制效果尤为明显。这主要是由于:(1)AVS将生化池溶解氧进行分区控制,一般情况下,后段的DO浓度相对较低,此时内回流至缺氧段的混合液含氧量就大大降低,从而对反硝化过程的抑制得到缓解;(2)生化池后段较低的溶解氧浓度,使同步硝化反硝化反应在此区域得以发生,从而有利于出水总氮浓度的降低。

4.3 实现污水厂节能运行

AVS按需曝气,极大地节省了曝气量。考虑到鼓风机效率、季节等影响因素,鼓风机的节气量并不等于节能率。相对于依靠人工控制鼓风曝气而言,采用AVS通常可以实现25~40%的节气率,在鼓风机风量可调节的情况下,对应地可以实现鼓风机8~15%的节电率。

参考文献

[1] 杨志,梅小艳.污水处理中基于仿人智能的DO参数控制系统.可编程控制器与工厂自动化.2006 (2) .

[2] 朱军辉.AVS精确曝气控制系统.中国土木工程学会全国排水委员会2010年年会论文集.2010.

推荐访问:净水厂 精确 临平 曝气 系统

版权所有:袖书文档网 2002-2024 未经授权禁止复制或建立镜像[袖书文档网]所有资源完全免费共享

Powered by 袖书文档网 © All Rights Reserved.。备案号:鲁ICP备20026461号-1