当前位置:首页 > 专题范文 > 公文范文 > 2023考研数学冲刺高等数学答题秘诀【优秀范文】

2023考研数学冲刺高等数学答题秘诀【优秀范文】

发布时间:2023-02-09 16:00:06 来源:网友投稿

下面是小编为大家整理的2023考研数学冲刺高等数学答题秘诀【优秀范文】,供大家参考。

2023考研数学冲刺高等数学答题秘诀【优秀范文】

考研数学冲刺高等数学答题秘诀1

  1.数学分析基础训练很重要,建议多做吉米多维奇的习题集,对你有帮助。还有菲赫金哥尔茨的微积分学教程

  2.高等代数做北大高等代数习题,有答案的。

  3.近世代数可直接选用薄的那一本,习题可参考杨子胥写的习题集。

  --------------------

  下面给出一些参考资料:

  数学分析:

  入门或基础类:

  1、《数学分析》 复旦大学出版社 陈传璋等编写 目前大多数学校数学系教材

  PS:南开大学的《数学分析》,北大的《数学分析新讲》,厦门大学的《数学分析》等教材也是比较不错的。

  2、《数学分析教程》 常庚哲 史济怀编,高等数学出版社,以前是上海科技出版社的,那个版本已经绝版了。这本书习题的难度非常大,这也是中科大数学系的一个特点,如果能把所有习题都做了,相信是对自己的一个挑战也是数学能力的一个跃升。

  提高类:

  3、《数学分析原理》Rudin,这时Rudin的基本经典的著作之一,这本书的特点是高起点、低落点。对一些传统的概念作了现代的解析,引入了实变函数和泛函的概念,对于后续学习很有帮助。

  4、《微机分学教程》(格·马·菲赫金哥尔、茨)这本书是经典中的经典,两卷四册,涉及数学分析的方方面面,可谓数学分析的大百科。很多老一辈的"数学家都得益于这本书。

  辅助类:

  5、《数学分析八讲》(辛钦)该书分专题深入讲述了数学分析的相关重要概念,具有知识性和趣味性,可以对数学分析的一些概念做深入了解。

  6、项武义《项武义基础数学讲义》这是一个系列,包括了分析、代数、几何、数论等分支。

  习题:

  吉米多维奇的《数学分析习题集》

  裴礼文的《数学分析中的典型问题与方法》

  《高等代数》北大代数教研室编 高等教育出版社 这是大部门学校数学系的教材。

  另外复旦大学、南开大学也各自编了一套高等数学的教材,北师大张禾瑞的《高等代数》,中科大《线性代数教程》也是不错的选择。


考研数学冲刺高等数学答题秘诀扩展阅读


考研数学冲刺高等数学答题秘诀(扩展1)

——考研高等数学的复习技巧

考研高等数学的复习技巧1

  一、求极限。

  无论数学一、数学二还是数学三,求极限是高等数学的基本要求,所以也是每年必考的内容。区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。比如大题可能需要用到等价无穷小代换、泰勒展开式、洛比达法则、分离因子、重要极限等中的几种方法,有时考生需要选择其中简单易行的组合完成题目。另外,分段函数个别点处的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性的研究等也需要使用极限手段达到目的,须引起注意! 考研 教育\网

  二、利用中值定理证明等式或不等式,利用函数单调性证明不等式。

  证明题虽不能说每年一定考,但也基本上十年有九年都会涉及。等式的证明包括使用4个微分中值定理,1个积分中值定理;不等式的证明有时既可使用中值定理,也可使用函数单调性。这里泰勒中值定理的使用是一个难点,但考查的概率不大。

  三、一元函数求导数,多元函数求偏导数。

  求导数问题主要考查基本公式及运算能力,当然也包括对函数关系的处理能力。一元函数求导可能会以参数方程求导、变限积分求导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基本上每年都会考查,给出的函数可能是较为复杂的显函数,也可能是隐函数(包括方程组确定的隐函数)。

  另外,二元函数的极值与条件极值与实际问题联系极其紧密,是一个考查重点。极值的充分条件、必要条件均涉及二元函数的偏导数。

  四、级数问题。

  常数项级数(特别是正项级数、交错级数)敛散性的判别,条件收敛与绝对收敛的本质含义均是考查的重点,但常常以小题形式出现。函数项级数(幂级数,对数一来说还有傅里叶级数,但考查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在一点的幂级数展开在考试中常占有较高的分值。

  五、积分的计算。

  积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对数学考生来说常主要是三重积分、曲线积分、曲面积分的计算。这是以考查运算能力与处理问题的技巧能力为主,以对公式的熟悉及空间想像能力的考查为辅的。需要注意在复习中对一些问题的灵活处理,例如定积分几何意义的.使用,重心、形心公式的反用,对称性的使用等。

  六、微分方程问题。

  解常微分方程方法固定,无论是一阶线性方程、可分离变量方程、齐次方程还是高阶常系数齐次与非齐次方程,只要记住常用形式,注意运算准确性,在考场上正确运算都没有问题。但这里需要注意:研究生考试对微分方程的考查常有一种反向方式,即*常给出方程求通解或特解,现在给出通解或特解求方程。这需要考生对方程与其通解、特解之间的关系熟练掌握。


考研数学冲刺高等数学答题秘诀(扩展2)

——考研高等数学复习的技巧

考研高等数学复习的技巧1

  线性代数是考研数学考查的重要部分,毋庸置疑,线性代数在2014年考研数学试卷中也将占据不可忽视的重要地位。线性代数一共六章的内容:其中第一章行列式,它在整张试卷中所占比例不是很大,一般以填空题和选择题为主,但它是必考内容,即便没有单独考查的题目,也会在其它的试题中给以考查,如求特征值就是计算相应的行列式。

  行列式的重点内容是掌握计算行列式的方法,同学们要掌握降阶法求行列式,以及其它的像爪型、三对角、范德蒙、行和或列和相等的行列式的求法。矩阵是后面各章节的基础。矩阵的概念、运算及理论贯穿线性代数的始末。这部分考点较多,像逆矩阵、伴随矩阵、转置矩阵、矩阵的幂、矩阵的行列式等概念的定义、性质、运算等等是每年考研的重点内容,同学们在复习的时候一定要注意归纳总结才可能掌握好。向量组的线性相关性是线性代数的重点也是考研的难点,大家复习的时候一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定方法并能灵活应用,还要弄清楚线性表出、向量组的秩及线性方程组等之间的联系,从各个侧面加强对线性相关性的理解。

  历年考题中,方程组是每年必考的题目,这也是线性代数部分考查的重点内容。要掌握齐次和非齐次线性方程组的解的判定定理,能够熟练求解线性方程组。这部分内容是重点考查解答题的.章节。特征值和特征向量也是考研的重点内容之一,题多分值大,共有三部分内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相对而言,这部分计算量是比较大的,复习的时候一定要加强练习。由于二次型与它的实对称矩阵是一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,只要正确写出二次型所对应的实对称矩阵,就可以利用相似对角化的方法解决二次型的问题了。解线性方程组和矩阵相似对角化是每年两道大题最容易考查的地方。


考研数学冲刺高等数学答题秘诀(扩展3)

——考研高等数学强化的复习建议

考研高等数学强化的复习建议1

  一、历年微积分考试命题特点

  微积分复习的重点根据考试的趋势来看,难度特别是怪题不多,就是综合性串题。以往考试选择填空题比较少,而今年变大了。微积分一共74分,填空、选择占32分。第一是要把基本概念、基本内容有一个系统的复习,选择填空题很重要。几大运算,一个是求极限运算,还有就是求导数,导数运算占了很大的比重,这是一个很重要的内容。当然,还有积分,基础还是要把基本积分类型基础搞清楚,定积分就是对称性应用。二重积分就是要分成两个累次积分。三大运算这是我们的基础,应该会算,算的概念比如说极限概念、导数概念、积分概念。

  二、微积分中三大主要函数

  微积分处理的对象有三大主要函数,第一是初等函数,这是最基础的东西。在初等函数的基础上对分段函数,在微积分的概念里都有分段函数,处理的一般方法应该掌握。还有就是研究生考试最常见的是变限积分函数。这是我们经常遇到的三大基本函数。

  三、微积分复习方法

  微积分复习内容很多,题型也多,灵活度也大。怎么办呢?这其中有一个调理办法,首先要看看辅导书、听辅导课,老师给你提供帮助,会给你一个比较系统的总结。老师总结的东西,每一个点要掌握重点,要举一反三搞清楚。从具体大的题目来讲,基本运算是考试的重要内容。应用方面,无非是在工科强调物理应用,比如说旋转体的面积、体积等等。在经济里面的经济运用,弹性概念、边际是经济学的重要概念,包括经济的函数。还有一个更应该掌握的,比如集合、旋转体积应用面等等,大的题目都是在经济基础上延伸出的问题,只有数学化了之后,才能处理数学模型。

  还有中值定理,还有微分学的应用,比如说单调性、凹凸性的讨论、不等式证明等等。应用部分包括证明推断的内容。

  简单概括一下就是三个基本函数要搞清楚,三大运算的基础要搞熟,概念点要看看参考书地都有系统的`总结,哪些点在此就不一一列了。计算题、应用题、函数微分学延伸出的证明题都要搞熟。


考研数学冲刺高等数学答题秘诀(扩展4)

——专科高等数学知识点总结3篇

专科高等数学知识点总结1

  1、起步阶段(到20xx年11月)

  了解数学考研内容、考试形式和试卷结构,对自我进行评测并对测评结果认真分析,找出弱点与不足,制定科学合理的个性化学习计划,准备资料进入复习状态。

  2、基础阶段(201xx年12月——20xx年6月)

  学习目标:全面整理考研数学的知识点,掌握基本概念、定理、公式并能进行基本应用,经典教材基础知识掌握熟练,课后习题能够独立解决,基础试题测试正确率达到90%以上。

  学习形式:参加基础班视频教学学习和教师辅导答疑相结合。其中视频教学80课时,答疑辅导及知识补充约80课时。

  学习时间:从20xx年12月——6月,约6——7个月时间,每天3~4小时。基础较差或要考高分(125分以上)的学员时间最好提前开始复习。

  学习方法:根据去年考研数学大纲要求结合教材对应章节系统复习,打好基础,特别是对大纲中要求的基本概念、基本理论、基本方法要系统理解和掌握,完成数学考研备战的基础准备。大家在基础阶段花大力气把基础夯实是很值得的,并且近几年的数学考研试题越来越偏基础。在这个阶段,建议大家分为两步来复习:

  第一步,教材精学:集中精力把教材好好地梳理,按照大纲要求结合教材相应章节全面复习,按章节顺序独立完成教材的练习题,通过练习知识点进行巩固。不懂一定要随时提问。建议每天学习新内容前复习前面学过的内容,因为教材的编写是环环相扣,易难递进的编排,所以我们也要按照规律来复习,经过必要的重复会起到事半功倍的效果。这个阶段约需要4~5个月的时间。

  第二步,基础知识巩固和提高:通过考研基础试题的练习和测试,对考研的知识点进行巩固和加深理解,并能进行基本应用。建议大家使用与教材配套的复习指导书或习题集,通过做题巩固知识。在练习过程中遇上不懂或似懂非懂的题目要认真思考,不要直接看参考答案,应当先温习教材相关章节再尝试解题。按要求完成练习测试后,要留一些时间对教材的内容进行梳理,对重点、难点做好笔记,以便于后面复习把它消化掉。这个阶段约需要2个月的时间。

  此阶段可以结合同学们自己的实际学习情况,比如有些同学某部分内容不熟悉或没学过,可以到理学院咨询相关教师,去随堂听课。

  3、强化阶段

  学习目标:按照20xx年考研最新大纲要求,进一步巩固和强化考研数学的重点、热点和难点,从知识结构上进行系统训练,能够按照考试要求解题,能够独立完成一定难度的试题,要求测试成绩正确率达到80%以上。

  学习形式:暑期强化班视频教学和教师辅导答疑相结合。其中视频100课时,答疑辅导约60课时。学习时间:从7月~9月,约3个月时间,每天4小时。

  学习方法:通过对考研数学辅导材料(考研复习全书)的研读和试题精解,在巩固第一阶段学习成果的基

  础上系统掌握知识脉络,提高解题的速度和正确率。本阶段是考研复习的关键,大体可以分两轮学习:第一轮:7月到8月,按照20xx年考研最新大纲要求全面掌握考试内容。参加强化班学习,根据老师课堂讲解和讲义学习,熟悉考研数学的重点题型,将知识点系统化和脉络化。在学习过程中对重点、难点做好记号,适当的做些笔记,便于下一轮复习。

  第二轮:9月到10月,通过考研辅导资料与专项习题的试题训练,对考试重点题型和自己薄弱的内容进行强化和提高,并能举一反三,提高解题的速度和正确率。

  4、提高阶段

  学习目标:通过真题训练提高知识综合运用的能力,把握考试难度、解题技巧及命题趋势,筛理出自己的薄弱环节并进行专项突破,测试成绩正确率要求达到80%以上。

  学习形式:冲刺串讲班视频教学20课时和真题模拟演练,每星期考一张往年真题,辅导老师收上来,批改后进行讲解,辅导讲解约30课时。

  学习时间:从11月~12月,约2两个月,每天3小时。

  学习方法:

  第一步,通过对近几年的真题全景测试把握考试难度,通过真题剖析洞悉解题技巧及,通过失分题筛理出自己的薄弱环节。

  第二步,专项强化弥补自己的薄弱知识点。

  第三步,真题全景训练和深度剖析:用一个月的时间把近十年真题搞熟搞透。

  第四步,通过真题和模拟题试卷进行高强度解题训练,全面提高解题的速度和正确率,高度重视做错的题目。

  5、冲刺阶段

  学习目标:对所学知识系统总结,把握考试热点重点,调整好状态。

  学习形式:参加视频模考班和模拟试卷考核,辅导教师讲解和答疑。

  学习时间:从12月中旬到考前,约一个月。

  学习方法:这一阶段的目标是保住自己在前几个阶段的成果,我们要做到:

  1、通过对以往学习笔记和所做试题的复习查漏补缺;

  2、对教材和笔记中的基本概念、基本公式、基本定理加强记忆,尤其是*时不常用的、记忆模糊的公式,经常出错的要重点记忆;

  3、进行适量冲刺题训练,保持做题感觉并调整考试状态,轻松应考。


考研数学冲刺高等数学答题秘诀(扩展5)

——同济大学高等数学知识点总结3篇

同济大学高等数学知识点总结1

  高考数学解答题部分主要考查七大主干知识:

  第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

  第二,*面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

  第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。

  第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

  第五,概率和统计。这部分和我们的生活联系比较大,属应用题。

  第六,空间位置关系的定性与定量分析,主要是证明*行或垂直,求角和距离。

  第七,解析几何。是高考的难点,运算量大,一般含参数。

  高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。

  对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。

  对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。训练的内容必须根据考纲的要求精心选题,始终紧扣基础知识,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的认识,真正做到解一题,会一类。

  在临近高考的数学复习中,考生们更应该从三个层面上整体把握,同步推进。

  1.知识层面

  也就是对每个章节、每个知识点的再认识、再记忆、再应用。数学高考内容选修加必修,可归纳为12个章节,75个知识点细化为160个小知识点,而这些知识点又是纵横交错,互相关联,是“你中有我,我中有你”的。考生们在清理这些知识点时,首先是点点必记,不可遗漏。再是建立相关联的网络,做到取自一点,连成一线,使之横竖纵横都逐个、逐级并网连遍,从而牢固记忆、灵活运用。

  2.能力层面

  从知识点的掌握到解题能力的形成,是综合,更是飞跃,将知识点的内容转化为高强的数学能力,这要通过大量练习,通过大脑思维、再思维,从而沉淀而得到数学思想的精华,就是数学解题能力。我们通常说的解题能力、计算能力、转化问题的能力、阅读理解题意的能力等等,都来自于千锤百炼的解题之中。

  3.创新层面

  数学解题要创新,首先是思想创新,我们称之为“函数的思想”、“讨论的方法”。函数是高中数学的主线,我们可以用函数的思想去分析一切数学问题,从初等数学到高等数学、从图形问题到运算问题、从高散型到连续型、从指数与对数、从微分与积分等等,这一切都要突出函数的思想;另外,现在的高考题常常用增加题目中参数的方法来提高题目的难度,用于区别学生之间解题能力的差异。我们常常应对参数的策略点是消去参数,化未知为已知;或讨论参数,分类找出参数的含义;或分离参数,将参数问题化成函数问题,使问题迎刃而解。这些,我称之为解题创新之举。

  ☆

  还有一类数学解题中的创新,是代换,构造新函数新图形等等,俗称代换法、构造法,这里有更大的思维跨越,在解题的某一阶段有时出现山穷水尽,无计可施时,用代换与构造,就会使思路豁然开朗、柳暗花明、思路顺畅、解答优美,体现数学之美。常见的代换有变量代换,三角代换,整体代换;常用的构造有构造函数、构造图形、构造数列、构造不等式、构造相关模型等等。

  ☆

  总之,数学是一门规律性强、逻辑结构严密的学科,它有规律、有模型、有式子、有图形,只要我们掌握了它的规律、看清了模型、了解了式子、记住了图形,数学就会变成一门简单而有趣的科学。这种战略上的藐视与战术上的重视,将会使考生们超常发挥,取得优异的成绩。

  高等数学学习方法

  养成良好的学习数学习惯

  多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

  及时了解、掌握常用的数学思想和方法

  中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

  有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。

  高等数学学习技巧

  1.先看笔记后做作业。

  有的同学感到,老师讲过的,自己已经听得明明白白了。但是为什么你这么做有那么多困难呢?原因是学生对教师所说的理解没有达到教师要求的水*。

  因此,每天做作业之前,我们必须先看一下课本的相关内容和当天的课堂笔记。能否如此坚持,常常是好学生与差学生的最大区别。尤其是当练习不匹配时,老师通常没有刚刚讲过的练习类型,因此它们不能被比较和消化。如果你不重视这个实施,在很长一段时间内,会造成很大的损失。

  2.做题之后加强反思。

  学生一定要明确,现在正做着的`题,一定不是考试的题目。但使用现在做主题的解决问题的思路和方法。因此,我们应该反思我们所做的每一个问题,并总结我们自己的收获。

  要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串。日复一日,建立科学的网络系统的内容和方法。俗话说: 有钱难买回头看 。做完作业,回头细看,价值极大。这一回顾,是学习过程中一个非常重要的环节。


考研数学冲刺高等数学答题秘诀(扩展6)

——考研数学冲刺阶段的答题技巧 (菁选2篇)

考研数学冲刺阶段的答题技巧1

  一、选择题答题技巧

  在做选择题的时候大家还是有很多方法可选的,常用的方法有:代入法、排除法、图示法、逆推法、反例法等。

  代入法:也就是说将备选的一个答案用具体的数字代入,如果与假设条件或众所周知的事实发生矛盾则予以否定。

  演算法:它适用于题干中给出的条件是解析式子。

  图形法:它适用于题干中给出的函数具有某种特性,例如奇偶性、周期性或者给出的事件是两个事件的情形,用图示法做就显得格外简单。

  排除法:排除了三个,第四个就是正确的答案,这种方法适用于题干中给出的函数是抽象函的情况。

  反推法:所谓逆推法就是假定被选的四个答案中某一个正确,然后做反推,如果得到的结果与题设条件或尽人皆知的正确结果矛盾,则否定这个备选答案。

  如果考试的时候大家发现哪种方法都不奏效的话,大家还可以选择猜测法,至少有25%的正确性。

  二、填空题答题技巧

  填空题的答案是唯一的,做题的时候给出最后的结果就行,不需要推导过程,同样也是答对得满分,答错或者不答得0分,不倒扣分。

  这一部分的题目一般是需要一定技巧的计算,但不会有太复杂的计算题。题目的难度与选择题不相上下,也是适中。

  填空题总共有6个,一般高数4个,线代和概率各1个,主要考查的是考研数学中的三基本:基本概念、基本原理、基本方法以及一些基本的性质。做这24分的题目时需要认真审题,快速计算,并且需要有融会贯通的知识作为保障。

  三、解答题的答题技巧

  解答主观大题目一定要学会放弃不会做的题,每道题思考时间一般不应超过10分钟,否则容易导致概率和线性代数等部分的题目无法解答,不要为了一道题目耽误了后面20~30分的内容。

  解答题属主观题,其答案有时并不唯一,要能看到出题人的考核意图,选择合适的方法解答该题。

  计算题的正确解答需要靠自己*时对各种题型计算方法的积累及掌握的熟练程度。如二元函数求最值的方法和步骤,曲线积分、曲面积分的计算方法及其与重积分的关系,以及格林公式、高斯公式等,重积分的计算方法及一些特殊结论(如积分区域对称,被积对象具有一定的奇偶性时的情形)等都需要非常熟悉。

  证明题是大多数考生感到无从下手的题目,所以一些简单的证明题在考试中也会得分率极低。证明题考查最多的是中值定理(微分中值定理及积分中值定理),其次从题型来说就是不等式的`证明,方法却比较多,但仍然是有章可寻的。这就需要考生在*时多留意证明题的类型及其证明方法。

  数学科答题注意事项概括如下:

  1)合理地安排好答题的答题空间,答题时尽量不要跳步,因为每一步都是有步骤分的。

  2)合理的安排好自己的答题顺序,千万不要将大把时间浪费在分值较小的题上,这样会得不偿失。

  3)该放弃的就放弃,尽快调整好自己的心态,要相信自己做不好的题别人很可能也做不好;自己没有做出的题,别人很可能也做不出。

考研数学冲刺阶段的答题技巧2

  阶段一:

  掌握理解数学的基本概念:在这个层次上的同学一般是把课本过了一遍了,做的题目很少,但对基本的概念和知识点有了一定的理解和把握。

  建议备考方法:在对知识点和概念有一定的理解的基础上,要开始搞清楚什么是“重要考点”。以前辈们的复习经验来说就是:“重要考研往往是不同部分的节点,这样的知识点可能联系着两个或者多个概念,起桥梁作用”。明白了这些,然后先按照自己认为最重要到次重要的顺序对知识点进行回忆,再参照上一年的考试大纲,看自己遗漏了那些知识点,形成完整的知识网络。另外同学们要对遗漏的知识点进行分析,搞清楚这个知识点是因为自己在复习过程中忽略了还是因为只是模块关系不紧密而没有联系起来。

  举个例子:在回忆一元微积分的时候,如果没有想起来梯度的概念,这个不用但心,一般来说和整个知识模块相对游离的知识点往往不是考研的重点。但是也有例外,还是梯度,这个问题将近十年没考过,但就在2016年那年变态难的高数中却考到了!很坑啊,有木有~所以这个阶段要进行地毯式的复习。对那些本来就很重要的的知识点但是由于自己的忽视而没想起来的,同学们要引起高度重视,了解自己的弱点和盲点,才是制胜的关键。

  阶段二:

  对真题中的考试题型进行整理总结:通过第一个阶段之后,同学们只是把考研要考的知识点归纳成了一个网络图。但是对考研出题角度和考查方法不了解,这时候同学们要进入第二个阶段的总结了。

  建议备考方法:同学们可以根据自己看过和做过的辅导材料凭记忆归纳总结出一些题型,然后比照自己所看的材料看自己总结的是否能涵盖复习材料中大部分的例题,除此之外,还可以参照专门讲题型的书,推荐张宇的18讲。

  阶段三:

  对答题技巧进行归纳总结:经历了第二阶段之后,同学们对考研数学的出题方法,方式和角度有一些了解了,同时对考研数学的畏惧心理也消失了。在这个阶段的重要任务就是对题型进行解题方法的总结了。

  建议备考方法:根据自己做过的一种题型的一些例题总结出典型的解题思路形成有效的解题过程。对于一种题型同学们可以从不同的例题中归纳出多种解题方法和思路。之后,对照着复习材料进行补充和完善自己归纳的思路和方法,把尽可能多的方法和思路总结出来。

  阶段四:

  有自己明确的解题思路:有了第三个阶段的总结,在做题过程中同学们就心中有底了,接下来就是对自己的解题思路进行总结了。

  建议备考方法:同学们知道,一般的题目只要按照自己总结的方法一种一种的去试,基本上都能把题目解出来。只是解题的速度不快,这时候同学们就要在第三个阶段的基础上进行思路的升华,找到对付一类题目的最好的解题方法,提高解题速度。


考研数学冲刺高等数学答题秘诀(扩展7)

——考研高等数学复习课本的重要性 (菁选2篇)

考研高等数学复习课本的重要性1

  首先是教材及参考书的选择:教材要用同济版本的《高等数学》,这本书的编排及内容都是经典版的,复习资料个人用海文考研的《数学真题大解析》以及《考研数学基础必做880题》、《数学概率论与数理统计基础教材》、《考研数学线性代数基础教材》。

  其次是复习方法,个人建议:课本不是每一个知识点都需要看的,一定要参照考试大纲,当然今年的大纲还没出,用去年的就行,内容不会发生很大的变化,等新大纲出来后再查缺补漏一下。大纲上的知识点一定要一个不漏的学习,比如概率论里有个泊松定理,估计很多不看大纲的人都没听过吧,而且很多考完研的人都不知道有这么个知识点,但我想告诉大家:这个知识点虽然考得少,但在大纲里它的要求是“掌握”,同学们可以翻翻看,这是考试的最高要求,这种地方是最容易出大题的地方!

  考试大纲里有四种要求,分别是:掌握,理解,会,了解。这四个要求程度是不同的,是这么一种关系:掌握>会>理解>了解,所以对于掌握和会的知识点,一定要无比的透彻,往年大题的出题点一般都超不出这两个要求的范围。我的建议是:拿着大纲先将标有“掌握”和“会”的知识点标出来,然后尽最大努力全面掌握,比如09年考研的拉格朗日定理知识点就属于“会”的范畴,一定全面掌握,不但会用,更要会证明它。

  课本应该怎样看?课本很重要,其实从小到大老师无数遍强调要重视基础,不要只顾做题。如果你现在还在犹豫要不要再看课本,那就不用犹豫了,要想考到140分,这绝对是一个必不可少的过程。

  可能会有一些考研的同学来说:课本我也认真看过了,但结果依然很遭。我想说:课本不是用来看的,是用来研究的,课本学的细致了么!

  那什么样才叫细致呢,当课本研究完之后,上面会标记很多东西,画的比较乱,而不是崭新的像没看过一样。课本上的例题(这些题都是经典中的经典,一定弄透彻)没有不会的,课后题认真做过(哪怕只是在草纸上做,在书上标个答案,也要自己认真做一遍,这一遍就要训练自己合理利用草纸的习惯,做到对完答案发现错误后,都能很顺利找到这道题的过程然后分析为什么会做错,这个习惯很重要,如果你还有拿起草纸找个空就开始演算,就要赶紧改改这个习惯了,因为要改掉这个坏习惯真的需要*时多加练习),有些人说课本后的题实在太多了,应该挑着做,但我觉得同济版的课后题都是非常经典的,远远胜过市面上的参考书,它也不像你想象得那么简单,如果你觉得简单,那你能一遍做完,没有一个不会,一个都不错吗?当然了,你也可以选取一部分做,但如果课后题你一个都不做,那真的会吃亏的。定义性质定理公式,一定搞透彻了,弄清楚其中有几个点,而不是硬生生的背下来,而且要多思考下(比如说关于极大值,这个词大家一定都知道,而且高中开始就见过,你知道它的定义吗,你可能会说:定义没用。这你就错了,当你感觉一道题模糊不会做时,定义才是你根本的出发点。

  再次是做题:基础学扎实后,那就是大量做题,数学不这样是不会有质的飞跃的。做一本书最好做详细的计划,当然做计划也是有技巧的:每天完成一章。因为每一章的内容多少和难度不同,不能一概而论,否则就会出现某一章一会就做完了,另外一章却做了一天也没结束,这样还容易打乱你其他科目的复习计划,毕竟考研不是只考数学。我的建议是:比如第一章,感觉一下这章对于自己而言的难度,一共有多少页,自己计划几天完成,然后定好每天完成多少页,计划要定的稍微宽裕一天,以防出现突然有事,或者这章难度超出预料。不要觉得这费时间,一本书定个详细的计划一个小时足够了吧,而一个详细的计划会让自己效率提高很多。

  一般情况下,经典的书做一遍肯定是不行的,第一遍就是一道一道挨着做(这里我一定提醒下大家,千万不能眼高手低,只看不做,这句话大家一定听过很多遍了,只是想再提醒下那些依然只是喜欢看题的朋友们,赶紧动手,否则等你考试的时候会非常难受),不会的题目和容易做错的题目……都要做好不同的标记,把自己得到的体会写在旁边,建议用个红笔。第二遍有针对性的做题就可以了,最重要的是之前做过标记的题目,这一遍依然要做好标记,还要把认为对自己来说重要的题目总结到一个错题本上,不要觉得这样浪费时间,更不要认为在书上都做了标记,以后看书就行。到了后期根本没那么多时间翻书,一般都是看自己的错题本。如果复习第三遍,就看自己认为有必要再做的题目。第二、三次复习的时间会远小于第一次。当然了这要取决于第一轮复习时自己的基础是否牢固、扎实。最后预祝同学们在考研的道路上都可以取得一个骄傲的成绩

考研高等数学复习课本的重要性2

  第一轮:学习时间是7月中旬到9月底两个半月,这个阶段给大家推荐的资料是李永乐编写的《复习全书》和王式安的《标准复习全书》,大家可以选择其中一本用于该阶段的学习,有精力的同学建议两本同时进行学习。

  市面上的复习资料很多,选择好的复习资料会让大家在复习过程中事半功倍。李永乐编写的《复习全书》和王式安的《标准复习全书》把考研考核的知识点罗列讲解的非常清楚,让大家充分了解考研要考的内容,不做无用功。让大家在复习的过程中,对考试大纲有全面、深刻的了解。在每个知识点的后面,有知识点对应的题型,随后附了相应的例题和习题。

  这两本参考书的都是标准教程练习,难度略大于考研题的难度。这对于大家在考研复习中是非常有益的。大家在*时练习的时候做适量难度稍大的题,会有助于大家在考试过程中保持*和的心态,遇到难题不会慌。但这并不是说让大家在复习的过程中就只钻研难题,而对于容易的题和中等难度的题不屑一顾,这样只会导致考研失败。我们做题难度要适当,题量要适当。

  第二轮:大概用一个月的时间也就是9月中旬到10底,把复习全书或标准复习全书再复习一遍。本轮复习方法采用“两端看法”就是对李永乐复习全书、王式安标准复习全书进行全面复习,采用高等数学、概率论一起交叉、轮流来看,最后汇集到线性代数上。我们也把这个阶段用一个字来形容“啃”,所以也可以叫做啃辅导书阶段。这里啃是来形容这个阶段的艰难程度,大家到了这个阶段普遍感到压力陡增,即使那些在第一阶段认真完成的同学也一样,这里的主要原因是这一阶段大家看的辅导书普遍特点是对知识点的总结是高度的概括的,所选的题目不论是例题还是课后的练习题都具有一定的综合性,这些题目不再是只考查单一的知识点,单一的解题能力,而是对同学们能力的全方位考查,不仅考查同学们的计算能力、抽象概括能力、空间想象能力还考查同学们应用所学的.知识解决实际问题的能力。这就要求同学们在这个阶段付出巨大的努力,但是无论你多累都是值得的,通过这个阶段洗礼,无论是你对三基的掌握程度,还是你的解题能力都会有质的提高。这是大家考研数学复习备考路上第一次质的飞跃。

  这个阶段完后,要求同学们能够做到,给你一道题目,如果给你足够的时间,无论这道题目有多难都可以把它解决。这个阶段我们不会盲目的追求大家的解题速度,而是强调你对基本知识的掌握和对各种题型解题思路的形成。我们不重视解题速度并不等于我们就忽视解题速度的训练,这里要求大家在这阶段对一道题目积累多种解题方法并能够找出最优的解题方法,这是为以后以最快的速度做完考研试题做得最好的准备。


考研数学冲刺高等数学答题秘诀(扩展8)

——高等数学函数公式 (菁选2篇)

高等数学函数公式1

  ·*方关系:

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  ·积的关系:

  sinα=tanα*cosα

  cosα=cotα*sinα

  tanα=sinα*secα

  cotα=cosα*cscα

  secα=tanα*cscα

  cscα=secα*cotα

  ·倒数关系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  直角三角形ABC中,

  角A的正弦值就等于角A的对边比斜边,

  余弦等于角A的邻边比斜边

  正切等于对边比邻边,

  ·三角函数恒等变形公式:

  ·两角和与差的三角函数:

  cos(α+β)=cosα·cosβ-sinα·sinβ

  cos(α-β)=cosα·cosβ+sinα·sinβ

  sin(α±β)=sinα·cosβ±cosα·sinβ

  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  ·三角和的三角函数:

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  ·辅助角公式:

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

  ·倍角公式: ·三倍角公式:

  sin(2α)=2sinα·cosα=2/(tanα+cotα) sin(3α)=3sinα-4sin^3(α)

  cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) cos(3α)=4cos^3(α)-3cosα

  tan(2α)=2tanα/[1-tan^2(α)]

  ·半角公式:

  sin(α/2)=±√((1-cosα)/2)

  cos(α/2)=±√((1+cosα)/2)

  tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

  ·降幂公式

  sin^2(α)=(1-cos(2α))/2=versin(2α)/2

  cos^2(α)=(1+cos(2α))/2=covers(2α)/2

  tan^2(α)=(1-cos(2α))/(1+cos(2α))

  ·万能公式:

  sinα=2tan(α/2)/[1+tan^2(α/2)]

  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

  tanα=2tan(α/2)/[1-tan^2(α/2)]

  ·积化和差公式:

  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

  cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

  sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

  ·和差化积公式:

  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

  ·推导公式

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos^2α

  1-cos2α=2sin^2α

  1+sinα=(sinα/2+cosα/2)^2

  ·其他:

  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

  三角函数的角度换算:

  公式一:

  设α为任意角,终边相同的角的同一三角函数的值相等:

  sin(2kπ+α)=sinα

  cos(2kπ+α)=cosα

  tan(2kπ+α)=tanα

  cot(2kπ+α)=cotα

  公式二:

  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  公式三:

  任意角α与 -α的三角函数值之间的关系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  公式五:

  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  公式六:

  π/2±α及3π/2±α与α的三角函数值之间的`关系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  (以上k∈Z)

  部分高等内容

  ·高等代数中三角函数的指数表示(由泰勒级数易得):

  sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]

  泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…

  此时三角函数定义域已推广至整个复数集。

  ·三角函数作为微分方程的解:

  对于微分方程组 y=-y"";y=y"""",有通解Q,可证明

  Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。

  补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。

  特殊三角函数值

  a 0` 30` 45` 60` 90`

  sina 0 1/2 √2/2 √3/2 1

  cosa 1 √3/2 √2/2 1/2 0

  tana 0 √3/3 1 √3 None

  cota None √3 1 √3/3 0

高等数学函数公式2

  抛物线:y=ax*+bx+c

  就是y等于ax的*方加上bx再加上c

  a>0时开口向上

  a<0时开口向下

  c=0时抛物线经过原点

  b=0时抛物线对称轴为y轴

  还有顶点式y=a(x+h)*+k

  就是y等于a乘以(x+h)的*方+k

  -h是顶点坐标的x

  k是顶点坐标的y

  一般用于求最大值与最小值

  抛物线标准方程:y^2=2px

  它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)准线方程为x=-p/2

  由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py

  关于圆的公式

  体积=4/3(pi)(r^3)

  面积=(pi)(r^2)

  周长=2(pi)r

  圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

  圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

  (一)椭圆周长计算公式

  椭圆周长公式:L=2πb+4(a-b)

  椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

  (二)椭圆面积计算公式

  椭圆面积公式:S=πab

  椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

  以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。

  椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高

  三角函数

  两角和公式

  sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)

  倍角公式

  tan2A=2tanA/(1-tan2A)cot2A=(cot2A-1)/2cota

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin【α+2π*(n-1)/n】=0

  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos【α+2π*(n-1)/n】=0以及

  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

  四倍角公式:

  sin4A=-4*(cosA*sinA*(2*sinA^2-1))

  cos4A=1+(-8*cosA^2+8*cosA^4)

  tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

  五倍角公式:

  sin5A=16sinA^5-20sinA^3+5sinA

  cos5A=16cosA^5-20cosA^3+5cosA

  tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)

  六倍角公式:

  sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))

  cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))

  tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)

  七倍角公式:

  sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))

  cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))

  tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)

  八倍角公式:

  sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))

  cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)

  tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)

  九倍角公式:

  sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))

  cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))

  tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)

  十倍角公式:

  sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))

  cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))

  tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)

  万能公式:

  sinα=2tan(α/2)/【1+tan^2(α/2)】

  cosα=【1-tan^2(α/2)】/【1+tan^2(α/2)】

  tanα=2tan(α/2)/【1-tan^2(α/2)】

  半角公式

  sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

  cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))

  和差化积

  2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

  cotA+cotBsin(A+B)/sinAsinB-cotA+cotBsin(A+B)/sinAsinB

  某些数列前n项和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1)1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

  1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^21*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径

  余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角

  乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b|-|a|≤a≤|a|


考研数学冲刺高等数学答题秘诀(扩展9)

——考研数学初试有哪些答题技巧

考研数学初试有哪些答题技巧1

  1、临考前和进入考场后始终保持头脑清醒、情绪*稳

  考试、特别是升学考试,是一种高强度高难度的.脑力劳动。因此,一定要在考试过程中保持健康的身体、清醒的头脑,考前要休息好。考试是一种缜密而紧张的思维活动,不宜太激动、太惧怕、需要保持一种*稳的心态,使答题过程达到并保持最佳的思维状态,才能可能正常或超水*发挥。

  2、按顺序做题,先易后难

  总体来看,试卷题目的一般排列顺序是先易后难;有低分到高分。考生只需要按顺序对号做题。一旦碰到难题,稍加思索仍没有思路,千万不要紧张,暂时放下,直接进到下一道题,返回来再答,也许就会答了。因为后面的题目或许可以开阔你的思维,勾起你的回忆。

  3、审题仔细,务求准确

  审题是答题的前提,宁愿多花五分钟把题审好,也不要急急忙忙写答案。因为审题多花的五分钟不会影响大局,但仓促间写下的答案有可能差之毫厘、缪之千里。殊不知,每年考完试,都会有不少考生捶胸顿足,遗憾万分“我答错题了”。特别是近年来出题趋势,题目要求并不是一目了然,简单易懂,而是设槛设陷阱,等着粗心的考生往里钻。例如政治的主观题部分、英语的写作部分。一定要仔细审清题目,做到心里有数后再下笔。

  4、是题都需答,不论懂否

  不论主观题还是客观题,不管你是否了解,都需要回答。对于实在不懂的题目,要充分发挥主观能动性,尽情回忆、展开,把相近相关的知识点往上填。反正,不答不得分,答错也不扣分,倒不如试一把,碰碰运气,兴许某些知识点就撞上了正确答案。

  5、答案层次分明,逻辑性强

  这是回答主观性题目的要求。考生需按题目要求逐一展开论述,分点回答。可分出(1)、(2)……,给人逻辑清晰、条理分明之感。

  6、字迹清楚、卷面工整

  卷面犹如人的一张脸,长得好看总会招人喜欢。特别是阅卷老师在高强度、高效率的工作中,每天都会批改成千上百份试卷,身心疲惫,字迹优美,卷面整洁会让老师眼前一亮、心情放松!如果没有优美的字迹,那就务必要保证清楚。如果让老师千辛万苦去揣摩、去推测你写的是何字,那你的分数可想而知了。

  7、答卷时的用笔问题

  我们通常选用的笔无非是三种颜色:天蓝、蓝黑、纯黑。科学研究表明,冷色调的色彩不容易使人焦躁。这些色调都属于冷色调,但值得注意的是,天蓝具有镇静作用。你可以想象,阅卷老师在大量重复劳动时焦躁的情绪,而蓝色正好起到镇静作用。所以,个人比较推荐蓝色中性笔或圆珠笔。

推荐访问:答题 冲刺 高等数学 考研数学冲刺高等数学答题秘诀 考研数学冲刺高等数学答题秘诀1 考研数学答题技巧 考研高数答题技巧 考研数学选择题技巧

版权所有:袖书文档网 2002-2024 未经授权禁止复制或建立镜像[袖书文档网]所有资源完全免费共享

Powered by 袖书文档网 © All Rights Reserved.。备案号:鲁ICP备20026461号-1