当前位置:首页 > 专题范文 > 公文范文 > 2023年《加法交换律和结合律》教学设计,菁选五篇

2023年《加法交换律和结合律》教学设计,菁选五篇

发布时间:2023-02-18 12:10:08 来源:网友投稿

《加法交换律和结合律》教学设计1  教学目标:  1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。  2、过程方法目标:使学生经历探索加法交换律和结合下面是小编为大家整理的2023年《加法交换律和结合律》教学设计,菁选五篇,供大家参考。

2023年《加法交换律和结合律》教学设计,菁选五篇

《加法交换律和结合律》教学设计1

  教学目标:

  1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

  2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。

  3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

  教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

  教学难点:使学生经历探索加法结合律和交换律的过程,发现并概括出运算律。

  教学准备:

  挂图、小黑板

  教学过程:

  一、教学新课教学加法交换律。

  1、一年一度的学校运动会又即将举行了,学校的同学们都在做充分的准备。从这张图片中,你获得了哪些数学信息?

  你能根据这些信息,提出几个用加法计算的问题吗?请学生回答。

  ①参加跳绳的一共有多少人?

  ②参加活动的女生一共有多少人?

  ③跳绳的男生和踢毽子的女生一共有多少人?

  ④参加活动的一共有多少人?

  2、今天这节课,我们就一起来研究其中的这两个问题:

  在黑板上张贴:参加跳绳的有多少人?

  参加活动的一共有多少人?

  我们先来解决第一个问题:参加跳绳的一共有多少人?

  3、你们能马上口头列式并口算出结果吗?

  指名回答,教师板书:2817=45(人)追问:还有其他的方法来解决吗?在学生回答后,教师完成板书:1728=45(人)

  为什么这两个算式的结果一样?

  4、你们能用一个符号把它们连接起来吗?教师继续板书:2817=1728

  这是一个等式,仔细地观察一下这个等式,你们有什么发现?在等号的两边,什么地方相同?什么地方不同?(同桌交流并汇报)

  5、你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师相机板书算式,并追问:这样的算式能写几个?

  6、我们再仔细的观察这几个算式,从中你们发现什么规律?(用自己的话来说一说)你能用自己喜欢的方法、符号或文字来表示你们的发现吗?

  教师巡视,并作相应的辅导,板书学生回答的一些符号表示的算式。并追问:你这样表示,每个符号分别表示什么?

  7、同学们都自己用自己喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:ab=ba。

  8、教师小结知识点:在很*常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书加法交换律),学生齐读一遍。

  9、其实加法交换律我们早就会用了,想想看,什么时候我们用过?(在验算加法时用的就是加法交换律)

  二、学习加法结合律。

  1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究第二个问题“参加活动的一共有多少人?”看看我们有没有新的发现?

  2、你们会自己列式解决这个问题吗?学生练习,教师巡视指导。

  3、学生回答,教师有意识的板书:

  (2817)23=68(人)

  28(1723)

  (2823)17

  28(2317)

  (2317)28

  23(1728)

  交流不同的算法。

  下面,我们就来针对这两个算式开展研究:(2817)23 28(1723)

  (为了看得清楚,我们给2817添上括号)

  4、观察或计算一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:

  (2817)23=28(1723)

  5、出示:下面的Ο里能填上等号吗?口算或计算一下。

  (4525)13Ο45(2513)

  (3618)22Ο36(1822)

  学生回答,教师板书:(4525)13=45(2513)

  (3618)22=36(1822)

  6、看着黑板上的板书,你们从中有了什么新的发现?把你的发现在小组内先交流一下。学生小组交流后大堂再交流。

  7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。

  板书:(ab)c=a(bc)

  a、b、c各代表什么?(ab)c表示什么?a(bc)表示什么?

  教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。

  四、巩固练习。

  1、完成“想想做做”第1题。

  以游戏的形式进行,女生代表交换律,男生代表结合律。

  2、完成“想想做做”第2题(出示小黑板)说说是怎么想的。

  3、完成“想想做做”第3题第1行。

  4、插入“朝三暮四”的故事,来听个“朝三暮四”的成语故事。

  战国时代,宋国有一个养猴子的老人,他在家中的院子里养了许多猴子。日子一久,这个老人和猴子竟然能沟通讲话了。这个老人每天早晚都分别给每只猴子四只桃子。几年后,老人的经济越来越不充裕了,而猴子的数目却越来越多,于是他就和猴子们商量说:“从今天开始,我每天早上给你们三只桃子,晚上还是照常给你们四只桃子,不知道你们同意不同意?”猴子们听了,都认为早上怎么少了一个?于是一个个就开始吱吱大叫,而且还到处跳来跳去,好象非常不愿意似的。

  老人一看到这情形,连忙改口说:“那么我早上给你们四只,晚上再给你们三只,这样该可以了吧?”猴子们听了,以为早上桃子已经由三个变成四个,跟以前一样,就高兴的在地上翻滚起来。听了这个故事,你们有哪些想法?

  让学生通过故事得出:猴子很愚蠢,因为总量不变,只是老人采用了加法交换律。

  5、完成“想想做做”第4题。

  男生做第一行,女生做第二行。表扬女生快,知道为什么吗?

  使学生初步感受应用加法运算律可以使计算简便。

  6、完成“想想做做”第5题。

  师:你能很快地找出哪两片树叶上的数的和是100吗?

  学生在书上连线,同桌相互校对。

  师:看来,在计算过程中,要有一双敏锐的眼睛,看到数字就能很快地判断出能不能凑成整百数。

  五、课堂总结。

  通过本节课的学习,你有什么新的收获?

  教学反思:这节课主要教学加法的交换律和结合律,从创设的贴近学生的生活情境出发,让学生自由地提问,可以培养学生

  的发散性思维,并培养学生

  的问题意思。同时也符合新课程“创造性使用教材”理念。在教学中主要通过让学生观察几组算式,从中总结出加法的交换律和结合律。学生能较快的体会出这两种加法的运算律,但在总结、交流加法的结合律时,学生的语言表达能力较差,教师应适当的进行指导和帮助。同时要鼓励学生用自己最喜欢的方法记忆加法的运算律,提高学生掌握能力。学生的记忆方法过于单调,教师应在开发学生思维上多下功夫。几个层次的练习,内容丰富,提供了具有价值的学习内容,使全体同学都参与到有趣的数学学习中,从验算中明白了其理论依据,从故事中分析出了其中蕴涵的运算律,既体会到了数学的乐趣,又复习巩固了全课的内容。在练习“想想做做”第1题第4小题时,注意让学生说清应用的运算律,这样才能为以后教学应用运算律进行简便计算作好铺垫。很可惜,我引导得不是最合适,学生自己发现的不多。整节课,由于新授部分花时较多,显得稍有拖沓,导致了有些练习来不及处理。

《加法交换律和结合律》教学设计2

  教学内容:

  青岛版小学数学四年级下册第一单元信息窗三13页至14页的内容。

  教学目标:

  1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示。

  2.在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

  3.让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心。

  4.初步形成独立思考、合作交流的意识和习惯。

  教学重点:

  理解掌握加法的交换律和结合律,并会用字母表示他们。

  教学难点:

  引导学生通过讨论,计算从而自己发现并总结出加法交换律、加法结合律的过程。

  教学准备:

  课件、投影仪、卡片

  教学过程:

  一、拟定导学提纲,自主预习

  (一)创设情境

  1.谈话:同学们,长江,黄河就像两条长龙盘卧在中国大地,特别是黄河被称为我们的“母亲河”。这几天我们一直在学习有关黄河的知识,了解到了许多有关黄河的信息,除了我们学过的,你还了解到那些有关黄河的知识?(学生根据课前调查回答)想不想再多了解一些?

  课件展示情境录像:(课件展示的关键是让学生从中知道黄河流域的小知识,例如上游:青藏高原黄土高原内蒙古高原中游:黄土高原下游:华北*原等小知识)最后大屏幕定格在信息窗三的情境图。

  以上展示在大家面前的就是黄河流域图。教师板书:黄河流域

  请同学们仔细观察,你能获得了哪些数学信息?

  学生观察汇报,

  生汇报:根据黄河流域图我了解到黄河分为上游、中游和下游(1、黄河上游长3472千米,中游长1206千米,下游长786千米;2、黄河上游流域面积是39万*方千米,中游是34万*方千米,下游是2万*方千米;)

  教师适时板书相应的信息条件。

  2.你能根据这些信息提出哪些数学问题呢?学生口答。教师板书出问题。

  问题(1)黄河流域的面积是多少万*方千米?

  问题(2)黄河全长多少千米?

  (二)出示学习目标

  同学们提出了这么多有价值的问题,那么今天我们将解决那些问题呢?请看本节课的学习目标:

  1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示,能够运用所学的运算定律进行简算。

  2.在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

  (三)出示自学指导

  为了能够更好地解决今天的学习目标,老师给大家提供了一些指导意见,请看自学指导。

  (自学指导:请同学们认真看教科书第13—14页的信息窗3的第一个红点和小电脑的内容,重点看解决问题的过程,思考:(1)怎样解答同学们提出的问题?哪种方法简单?(2)什么是加法的结合律?怎样用字母式表示?(3)什么是加法交换律?怎样用字母式表示?

  (5分钟后,比一比谁汇报得最清楚。)

  (四)学生自学

  师:下面请同学们根据“自学指导”开始自学,比一比谁看书最认真,谁自学效果最好!(师目光巡视每一个学生,特别要关注特困生。)

  二、汇报交流,评价质疑

  (一)调查

  师:看完的同学请举手?

  (二)全班汇报

  1.问题一:黄河流域的面积是多少万*方千米?

  学生在列式解答时,可能会出现两种情况:

  (1)39+34+2和34+2+39

  (2)(39+34)+2和39+(34+2)。

  2.问题二:黄河全长多少千米?

  学生可能出的情况:

  (1)、3470+1210+790和1210+790+3470

  (2)(3470+1210)+790和3470+(1210+790)。

  今天我们要学的知识就在这两组算式中。

  (设计意图:充分运用教材情境图,引导学生获取信息,提出加法问题。在此基础上让学生列出算式。通过这两组算式学习今天的新知识,为下面学习埋下了伏笔。学生会马上把精力投入到这两个算式的研究中,激发了学生探究的兴趣。)

  3.观察、比较、发现规律

  (1)观察这些算式,你们发现了什么?

  生汇报:每组算式运算的数相同,运算的结果相同,运算的顺序不同。

  例如:

  (39+34)+2=39+(34+2)

  (3470+1210)+790=3470+(1210+790)。

  (2)是不是所有的三个数相加都符合这些规律呢?举例验证一下吧:(每个学生在练习本上写出几组这样的算式,看结果怎样)

  生汇报:

  (35+63)+15=35+(63+15)

  (325+82)+18=325+(82+18)…

  (3)把你的发现告诉大家?(将学生的举例用实物投影展示)

  (三个数相加时,先把前两个数相加,或先把后两个数相加,和不变。)

  师指出这条规律叫做加法结合律。

  (4)你能用你喜欢的方法表示这加法结合律吗?

  学生用各种符号、字母表示这个运算定律。最终教师指出,在数学上,我们统一用a、b、c来表示三个加数,因此加法结合律可以写作(a+b)+c=a+(b+c)。学生齐读,教师板书在黑板上

  小结:刚才我们通过解决两个问题发现并归纳出了加法结和律。

  (设计意图:本环节经历了猜测—举例—验证—得出结论的过程,无形之中培养了学生一种数学思想。)

  4.学法迁移,探索加法交换律。

  那么,加法运算中还有其他的规律吗?想不想知道?我们先来做个游戏吧。

  (1)游戏:找朋友。

  在每个小组中都有一个算式卡片,请同学们小组合作,仔细想一想,算一算,它应该是屏幕上哪个算式的好朋友?为什么?

  (2)同学们真棒,很快就为自己的算式找到了合适的朋友,还有谁的算式没有找到朋友?你能根据刚才同学们的方法给他介绍一个合适的好朋友吗?

《加法交换律和结合律》教学设计3

  ◇教学内容:

  义务教育课程标准实验教科书四年级数学.下册P28-29页内容。

  ◇教学目标:

  1、理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

  2、通过观察、猜想、验证、比较、分析、归纳、合作交流等学习过程,经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决进行比较和分析,发现并概括出运算律。

  3、在数学活动中使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

  ◇教学重点:

  理解并掌握加法交换律和加法结合律,能用字母来表示。

  ◇教学难点:

  经历探索加法交换律和结合律的过程,发现并概括出运算规律。

  ◇教学准备:

  多媒体课件

  ◇教学过程

  一、谈话导入,鼓励猜想

  1、出示图片牛顿与“万有引力”

  2、引入“牛顿因为一只苹果掉下来打到他的`头上,大胆猜想,是不是所有物体都往下掉呢?通过进一步的观察、思考,经过坚持不懈的努力,最后发现了万有引力定律。我们在*时也要学会观察和思考生活中的一些习以为常的问题,并努力从中探索规律。

  二、合作交流,探索猜想

  (一)故事激趣,初次猜想

  1、朝三暮四

  猴妈妈给小猴们分配桃子,“早上给你们每人3个,晚上每人4个桃。”小猴们很不乐意,“太少了,太少了!”吵着要妈妈多分一些。猴妈妈说:“好的,早上给你们每人4个,晚上每人3个。”小猴们拍手欢呼。听了这个故事,请同学们动脑筋想一想,我们能用数学的眼光说点什么吗?

  2、初步感知,大胆猜想

  出示:3+4=4+3

  师:仔细观察这两个加法算式,你发现了什么?

  得出:两个加数交换位置,和不变。(适时板书)

  (二)广泛举例,验证猜想。

  师:这里是3和4的位置交换了,和没变。仅凭一个例子就得出“两个加数交换位置,和不变”的结论,似乎草率了一点。我们不妨把这个结论当作一个猜想(教师随即将生1的结论加上“?”)

  师:既然是猜想,想不想知道猜的对不对?

  生:想。

  师:我们还得举例验证。

  1、举例要求:

  (1)任意两个数,求出他们的和;

  (2)交换两个加数的位置,再求出两个数的和:

  (3)比较两次的结果,判断式子是否相等。

  2、学生汇报,师板书。

  3、小结:根据自己的等式,再次观察比较,发现:交换两个加数的位置,和不变?这一猜想是对的。(同时将“?”改成“。”)

  4、揭题:大家发现的这个规律叫什么呢?

  学生交流后,师板书。

  5、用字母表示加法交换律。

  (1)观察自己仿写的式子,独立思考或小组讨论,然后用自己喜欢的形式表示。

  (学生可能使用文字,图形,符号等方式)

  (2)用字母表示加法交换律:a+b=b+a

  6、追问:加法交换律中,什么变了,什么没有变?

  7、原来,猴妈妈就是巧妙地运用了加法交换律中的“变”与“不变”,轻松的解决了分桃的问题,其实同学们在以往的学习中也不知不觉的运用过?(加法计算“验算”的时候)

  (3)出示教材56页的例题情境图。

  解决:跳绳的有多少人?

  28+17=45(人)17+28=45(人)

  (三)规律延伸,猜想拓展。

  1、根据反思,拓展规律。

  师:同学们真棒,从个别例子中形成猜想,并举例验证,获得了加法交换律。但有时,从已有的结论中通过适当的变换、联想,同样可以形成新的猜想,进而形成新的结论。那么“在加法中,交换两个加数的位置和不变。”那么,其它三种运算中呢?

  生可能会说出以下几个想法?

  “猜想二:减法中,交换两个数的位置差不变?”“猜想三:乘法中,交换两个数的位置积不变?“"猜想四:除法中,交换两个数的位置商不变?”

  “猜想五:几个加数时,变换加数的位置和也不变?“

  2、举例探究,验证猜想。

  师:现在同学们又有了不少新的猜想。这些是与众不同的、全新的猜想!如果猜想成立,它将加大我们对“加法交换律”的认识。那这猜想对吗?又该如何去验证呢?选择你最感兴趣的一个,用合适的方法试着进行验证。

  3、汇报交流,验证猜想。

  师:哪些同学选择了“猜想二”又是怎样验证的?请生汇报,观察、总结

  小结:a、验证的结果是减法中,交换两个数的位置差会变,猜想不成立:b、只要能举一个反倒,就能验证猜想肯定不成立。

  (2)验证猜想三。

  师:哪些同学选择了“猜想三”,又是怎样验证的?学牛汇报,观察、小结:乘法中,交换两个数的位置积不变?验证结果是积不变,猜想成立。这就是我们将来要学习的乘法交换律。用字母表示这样的规律。简洁交换律:axb=bXa。

  (3)验证猜想四

  师:哪些同掌选择了“猜想四”,又是怎样做的?

  学生汇报,观察、小结:验证结果是“除法中,交换两个数的位置商会变。”猜想不成立。

《加法交换律和结合律》教学设计4

  教学目标

  1、知识与技能:结合具体的情境,引导学生认识和理解结合律的含义。

  2、过程与方法:能用字母式子表示加法结合律,初步学会应用加法结合律进行一些简便运算。

  3、情感态度与价值观:

  ①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。

  ②培养学生观察,比较,抽象,概括的初步思维能力。

  教学重点

  认识和理解加法结合律的含义。

  教学难点

  引导学生抽象,概括加法结合律。

  教学用具

  多媒体课件。

  教学过程

  一、自主学习

  (一)出示自学提纲

  自学提纲(P29页例2并完成自学提纲问题,将不会的问题做标注)

  1、根据例2情境图中信息列出算式。

  2、用你喜欢的方法尝试计算

  3、同桌交流自己的算法

  4、教师板书出学生的算式及答案

  88+104+96 88+(104+96)

  =192+96 =88+200

  =288 =288

  5、对比上面的两道算式,你发现了什么?用自己的话说一说。

  (二)学生自学(学生对照自学提纲,自学教材P29页例2,并完成自学提纲问题,将不会的问题做标注)

  (学生自学,教师在不干扰学生的前提下巡回指导,发现共性问题,以掌握学生学情)

  (三)自学检测

  1、填空

  387+425=( )+ 387 525+( )=137+ 525

  300+600=( )+( ) ( )+65=( )+35

  2、连线

  56+68 150+(25+75)

  150+25+75 50+B

  B+50 68+56

  A+B+100 A+(B+100 )

  三、合作探究

  (一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解。)

  (引导学生正确地计算,鼓励学生分工合作,探索交流,教师巡回辅导,发现、收集学生存在的问题)

  (二)师生互探

  1、解答各小组自学中遇到不会的问题。

  (1)让学生提出不会的问题,并让学生解决。

  (2)教师引导学生解决学生还遗留的问题。

  (3)如何用字母表示加法交换律和结合律?

  (4)用字母表示这些运算定律有什么优点?

  2、教师有针对性地请不同做法的同学汇报自己的解题思路与方法。

  四、达标训练(1--3题必做,4题选做,5题思考题)

  1、根据加法结合律填空题。

  (1)78+25+22 =78 +( )+25

  (2)376+175+25=376 +( + )

  2、连线。

  147+(72+28) A+(B+100 )

  A+B+100 147+72+28

  3、简便计算下面各题。

  52+27+73 285+15+77+23

  课堂小结:谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)

  五、堂清检测

  (一)出示检测题

  1、根椐加法的运算定律填空

  (1)450+320=( )+ 450 65+95=95+( )

  (2)( )+ 100 =100+150 250+( )=125+250

  (3)78+25+22 =(78 + )+( )

  (4)495+125+75=495 +( + )

  2、下面的哪些算式符合加法结合律,哪些算式符合加法交换律。

  (1)A + ( 30+9 )=A+ 30+9

  (2)15+ ( 7+B )= (15 + 7 )+B

  (3)10 + 20 + 30 + 40 =10 + (20 + 30) + 40

  3、连线。

  87+22+78 (79+83)+17

  498+125+75 498+(125+75)

  (138+136)+162 87+(22+78 )

  79+(83+17) 138+136+162

  4、简便计算。

  98+72+28 215+85+73+27

  (二)堂清反馈:

  作业布置

《加法交换律和结合律》教学设计5

  [教材简解]

  《加法交换律和加法结合律》是小学数学第七册第六单元第1课时的内容,这是学生第一次接触运算定律,对于加法交换律的内容,从知识的层面上看,学生学习、理解、运用起来比较容易。而且在以往的学习过程中也已经渗透,让学生积累了一定的感性认识。学习加法的运算定律,为以后学习用字母表示数打下初步基础,同时也为简便运算打下基础。

  [目标预设]

  1、使学生经历观察、猜想、验证、结论的探索加法运算律的过程,结合具体实例,理解并掌握加法的交换律和结合律,会运用加法交换律进行加法验算.

  2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。

  3、让学生在数学学习过程中获得探究的乐趣和成功地喜悦,进一步增强对数学学习的兴趣和信心,初步形成独立思考、合作交流的意识和习惯。

  4、通过自主探究、相互合作获得成功的体验,提高学习数学的兴趣。

  [重点、难点]

  1、让学生在探索中经历运算律的发现过程。

  2、理解不同算式间的相等关系,发现规律,概括运算律。

  [设计理念]

  1、尊重儿童的认知规律,注重新旧知识的联系,引导学生在自主、合作、探究中巩固旧知识,发现新知识,掌握新方法。

  2、以学生的“最近发展区”为向导,精心设计课堂教学策略,由浅入深,由易到难,循序渐进,预设出合理的教学流程与思维坡度。

  3、本着真实有效的宗旨,让课堂焕发生活的活力,让每个孩子在民主、*等的课堂中得到不同的发展。并注重教师与学生对话,学生与学生对话,在对话中加强情感交流,使得课堂真正成为师生互动、心灵对话的舞台,从而让教师与学生都获取丰富的,积极的情感体验,进一步增强学生学习数学的兴趣。

  [设计思路]

  1、展示生活题材的数学例题,唤起学生对旧知的回忆,从而初步感受规律。

  2、充分感知,让学生在具体的数学活动中观察,比较、不断地思考与建构。得出规律,并能运用规律。

  3、帮助学生反思学习过程,并总结数学思想与方法,并让学生尝试,通过小组合作学习,让学生相互启发,相互补充,完成新知识的学习。进一步培养学生的自主探究意识。

  4、总结归纳。通过对一节课学习的回顾,让学生谈谈收获,尤其是在数学的思想与方法上做出评价。

  [教学过程]

  一、创设情境,激趣导入

  1、出示高斯小学的故事:1+2+3+4+5+6……+97+98+99+100=?

  2、引入新课:高斯为什么能快速的找到答案,计算加法时是不是有什么运算规律呢?我们今天就一起来探索这个问题。

  板书:加法运算规律

  二、自主探索,寻找规律(加法交换律)

  (一)出示情境图

  四年级的同学们在开展跳绳和踢毽子的活动,从图中你获得了那些数学信息呢?根据这些数学信息,你能提出用加法计算的数学问题吗?(多指名说)

  (二)、解决问题,探究规律

  1、出示问题:

  (1)跳绳的有多少人?

  (2)女生共有多少人?

  (3)参加活动的一共有多少人?

  2、师生研究解决第一个问题,揭示加法交换律。

  (1)指名口头列式:28+17;还可以怎样列式?17+28;说说各算式表示的意思。

  (2)这两个式子相等吗?为什么?(计算结果相等)(都是求跳绳的有多少人)那我们就可以用“=”把它们连接起来。教师板书:28+17=17+28,指名读算式。

  (3)解答:女生共有多少人?板书等式:17+23=23+17

  (4)仔细观察这两组等式左右两边的算式,思考:什么变了?什么没变?你有什么想法?(两个数的位置变了,数据、运算符号、结果没有变)

  (5)这只是猜想,这种猜想在其他加法运算中也存在吗?你还能举几个像这样的例子吗?(指名说,教师板书。)这样的例子写的完吗?

  (6)仔细观察这些等式,你有什么发现?能找出它们共同的规律吗?用自己的话说一说。全班交流。

  (7)师:刚才老师用省略号把无数个这样的等式藏了起来,你还能用自己喜欢的方式比如字母、符号、文字等方式把这个规律简明的表示出来吗?试试看。

  交流介绍:数学中一般用字母来表示:a+b=b+a,这里的a可以表示任意一个加数,b可以表示任意的另一个加数。这也是我们刚才通过观察、猜想、验证所得到的结论。这个规律叫加法交换律.这是我们今天要学习的第一个运算律。(板书课题)

  3、其实加法交换律对于我们并不陌生,回顾一下,我们以前学习什么知识时也用了加法交换律?想一想加法是怎样验算的?

  4、巩固练习,完成自主练习单(一)

  自主练习单(一)

  1、根据加法交换律填空。

  23+35=35+()a+12=12+()

  23+()=178+()()+98=()+56()+()=()+()

  2、计算下面各题,并用加法交换律进行验算。


《加法交换律和结合律》教学设计 (菁选5篇)扩展阅读


《加法交换律和结合律》教学设计 (菁选5篇)(扩展1)

——加法交换律和结合律教学设计5篇

加法交换律和结合律教学设计1

  [教材简解]

  《加法交换律和加法结合律》是小学数学第七册第六单元第1课时的内容,这是学生第一次接触运算定律,对于加法交换律的内容,从知识的层面上看,学生学习、理解、运用起来比较容易。而且在以往的学习过程中也已经渗透,让学生积累了一定的感性认识。学习加法的运算定律,为以后学习用字母表示数打下初步基础,同时也为简便运算打下基础。

  [目标预设]

  1、使学生经历观察、猜想、验证、结论的探索加法运算律的过程,结合具体实例,理解并掌握加法的交换律和结合律,会运用加法交换律进行加法验算。

  2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。

  3、让学生在数学学习过程中获得探究的乐趣和成功地喜悦,进一步增强对数学学习的兴趣和信心,初步形成独立思考、合作交流的意识和习惯。

  4、通过自主探究、相互合作获得成功的体验,提高学习数学的兴趣。

  [重点、难点]

  1、让学生在探索中经历运算律的发现过程。

  2、理解不同算式间的相等关系,发现规律,概括运算律。

  [设计理念]

  1、尊重儿童的认知规律,注重新旧知识的联系,引导学生在自主、合作、探究中巩固旧知识,发现新知识,掌握新方法。

  2、以学生的“最近发展区”为向导,精心设计课堂教学策略,由浅入深,由易到难,循序渐进,预设出合理的教学流程与思维坡度。

  3、本着真实有效的宗旨,让课堂焕发生活的活力,让每个孩子在民主、*等的课堂中得到不同的发展。并注重教师与学生对话,学生与学生对话,在对话中加强情感交流,使得课堂真正成为师生互动、心灵对话的舞台,从而让教师与学生都获取丰富的,积极的情感体验,进一步增强学生学习数学的兴趣。

  [设计思路]

  1、展示生活题材的数学例题,唤起学生对旧知的回忆,从而初步感受规律。

  2、充分感知,让学生在具体的数学活动中观察,比较、不断地思考与建构。得出规律,并能运用规律。

  3、帮助学生反思学习过程,并总结数学思想与方法,并让学生尝试,通过小组合作学习,让学生相互启发,相互补充,完成新知识的学习。进一步培养学生的自主探究意识。

  4、总结归纳。通过对一节课学习的回顾,让学生谈谈收获,尤其是在数学的思想与方法上做出评价。

  [教学过程]

  一、创设情境,激趣导入

  1、出示高斯小学的故事:1+2+3+4+5+6……+97+98+99+100=?

  2、引入新课:高斯为什么能快速的找到答案,计算加法时是不是有什么运算规律呢?我们今天就一起来探索这个问题。

  板书:加法运算规律

  二、自主探索,寻找规律(加法交换律)

  (一)出示情境图

  四年级的同学们在开展跳绳和踢毽子的活动,从图中你获得了那些数学信息呢?根据这些数学信息,你能提出用加法计算的数学问题吗?(多指名说)

  (二)、解决问题,探究规律

  1、出示问题:

  (1)跳绳的有多少人?

  (2)女生共有多少人?

  (3)参加活动的一共有多少人?

  2、师生研究解决第一个问题,揭示加法交换律。

  (1)指名口头列式:28+17;还可以怎样列式?17+28;说说各算式表示的意思。

  (2)这两个式子相等吗?为什么?(计算结果相等)(都是求跳绳的有多少人)那我们就可以用“=”把它们连接起来。教师板书:28+17=17+28,指名读算式。

  (3)解答:女生共有多少人?板书等式:17+23=23+17

  (4)仔细观察这两组等式左右两边的算式,思考:什么变了?什么没变?你有什么想法?(两个数的位置变了,数据、运算符号、结果没有变)

  (5)这只是猜想,这种猜想在其他加法运算中也存在吗?你还能举几个像这样的例子吗?(指名说,教师板书。)这样的例子写的完吗?

  (6)仔细观察这些等式,你有什么发现?能找出它们共同的规律吗?用自己的话说一说。全班交流。

  (7)师:刚才老师用省略号把无数个这样的等式藏了起来,你还能用自己喜欢的方式比如字母、符号、文字等方式把这个规律简明的表示出来吗?试试看。

  交流介绍:数学中一般用字母来表示:a+b=b+a,这里的a可以表示任意一个加数,b可以表示任意的另一个加数。这也是我们刚才通过观察、猜想、验证所得到的结论。这个规律叫加法交换律。这是我们今天要学习的第一个运算律。(板书课题)

  3、其实加法交换律对于我们并不陌生,回顾一下,我们以前学习什么知识时也用了加法交换律?想一想加法是怎样验算的?

  4、巩固练习,完成自主练习单(一)

  自主练习单(一)

  1、根据加法交换律填空。

  23+35=35+()a+12=12+()

  23+()=178+()()+98=()+56()+()=()+()

  2、计算下面各题,并用加法交换律进行验算。

加法交换律和结合律教学设计2

  教学目标

  1.使学生经历探索乘法运算律的过程,理解并掌握乘法交换律和结合律,初步体验应用乘法运算律可以使一些计算简便,并能进行简便运算。

  2.使学生在探索乘法运算律的过程中,初步培养学生观察、比较、抽象、概括能力,逐步提高抽象思维的水*,进一步发展符号感。

  3.使学生在数学学习活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成主动思考和探究问题的意识和习惯。

  教学过程

  一、复习旧知、导入新课

  1.出示:

  你能在下列的内填上合适的数吗?

  28+320=320+;

  (27+138)+62=27+(+);

  35+=+35。

  提问:你能说出填数的依据吗?谁能用字母分别表示加法的交换律和结合律?

  2.出示:

  在下列○内填上合适的运算符号。

  4○10=10○4(2○3)○5=2○(3○5)。

  谈话:同学们,这两道题的○里既可以都填写加号,也可以都填写乘号。如果填加号是根据加法的交换律和结合律;而如果填乘号,你能联想到什么呢?是啊,加法有交换律和结合律,乘法是否也有交换律和结合律呢?

  3.导入新课。

  谈话:今天我们就来研究乘法中的运算规律,首先来研究乘法是不是有交换律呢?

  【说明:加法的交换律和结合律是学生学习乘法交换律和结合律的基础,通过复习填数和在等式中填运算符号,一方面可以唤起学生对加法运算律的回忆,另一方面可以引起学生的联想和思考:加法有交换律和结合律,乘法是不是也有交换律和结合律呢?从而有效激发学生主动探究乘法运算律的欲望。同时,引导学生把加法运算律的活动经验和学习方法迁移到乘法运算律的学习中来,促进主动学习。】

  二、举例验证探索规律

  (一)探索乘法交换律。

  1.情景中感知乘法交换律。

  出示例题。(略)

  谈话:图中的小朋友在干什么?你能列出乘法算式求一共有多少人在踢毽子吗?

  学生列式:3×5=15(人)或5×3=15(人)。

  提问:我们知道,每组有5个同学踢毽子,求3组同学一共有多少人,可以列式3×5,也可以列式5×3。所以,这两道算式可以用什么符号联结?

  板书:3×5=5×3。

  【说明:充分运用例题资源,让学生理解求一共有多少人踢毽子,就是求3个5是多少,根据乘法的意义可以列出两种不同的乘法算式。让学生在真实的情景中初步感知乘法的交换律,有利于唤起学生已有的知识经验,促进对乘法交换律的理解。】

  2.举例验证。

  谈话:我们知道3×5=5×3,你能再写出一些这样的等式吗?

  学生举例。

  引导:你是直接写出了等式还是先算出每组中两道算式的结果,然后再写等号呢?

  学生交流,教师选择一些等式板书。

  电脑验证大数相乘的结果。

  谈话:像这样我们学过的两个数相乘,交换两个乘数的位置,积不变。

  3.总结规律。

  讨论:你写出的每一个等式左右两边的算式中什么变了,什么不变?把你的发现说给你的同桌听。(每组算式等号两边的两个乘数相同,积也相同,不同的是两个乘数交换了位置。)

  板书:两个数相乘,交换乘数的位置,积不变,这叫做乘法的交换律。

  提示:你能像加法交换律一样用字母来表示乘法的交换律吗?

  板书:a×b=b×a。

  提问:等式中的a和b可以分别表示什么数?你是喜欢用语言来叙述,还是用字母来表示乘法交换律呢?

  【说明:引导学生观察和讨论等式中变与不变的规律,帮助学生透过现象看本质;让学生进一步体验用字母表示乘法交换律更加简洁明了,有利于培养学生的符号意识。】

  4.回忆乘法交换律在过去学习中的运用。

  谈话:乘法的交换律,我们在二、三年级就遇到过,你能回顾一下,过去在学习哪些知识时用过乘法的交换律吗?(学生可能想到:根据一句口诀可以算算两道乘法算式;用调换乘数的位置再乘一遍的方法验算乘法等。)

  【说明:通过情景再现的方式,帮助学生回忆乘法交换律在过去的数学学习中的运用,能帮助学生进一步理解乘法交换律,同时使学生体会学习乘法交换律的价值。】

  (二)探索乘法结合律。

  1.初步感知。

  谈话:我们已经通过举例的方法研究了乘法交换律,那现在让我们继续来研究乘法的结合律。

  出示例题。(略)

  谈话:仔细观察,现在操场上有多少人在踢毽子呢?你会列式计算吗?

  组织学生交流。选择列为(5×3)×4和5×(3×4)的同学板演。

  2.引导比较。

  提问:两道算式完全一样吗?有什么不同?(两个算式中都是5、3、4这三个乘数相乘,乘数的位置相同,运算的顺序不同,计算结果也相同。第一道括号在前,表示先把前两个数相乘,再和第三个数相乘;第二道括号在后,表示先把后两个数相乘,再和第一个数相乘。)

  提问:两道题的运算顺序不同,为什么得数还相同呢?(都是求操场上一共有多少人在踢毽子,都是把5、3、4三个数相乘)

  板书:(5×3)×4=5×(3×4)。

  3.举例验证。

  谈话:从刚才的例子中,我们发现三个数相乘,可以先把前两个数相乘,也可以先把后两个数相乘。你能再写出几组这样的等式吗?请大家同桌合作,写一写,说一说。

  组织交流,教师有选择地板书一些等式。

  4.总结规律。

  讨论:

  (1)你发现等号两边的算式中什么不变,什么变了?

  (2)你能从这些算式中发现什么规律?

  师生共同归纳乘法结合律。

  板书:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变,这叫做乘法的结合律。

  谈话:如果用a、b、c分别表示三个乘数,你能用含有字母的式子表示乘法结合律吗?

  板书:(a×b)×c=a×(b×c)。

  【说明:乘法结合律的教学,教师引出一个实例后,就把研究的主动权交给了学生,引导学生运用“猜测—举例验证—归纳结论”的思路进行探究,有利于学生进一步体会探索数学规律的一般过程。鼓励学生同桌共同研究,既可以避免学生因计算复杂而影响规律探究的积极性,又可以培养学生合作探究的能力,让学生在合作探究中享受数学学习的成功。】

  三、尝试运用理解规律

  1.做“想想做做”第1题。(略)

  2.尝试简便运算。

  谈话:根据我们学习加法运算律的经验,想一想,学习乘法交换律和结合律,对我们的学习会有什么帮助呢?现在就让我们用学到的乘法运算律来进行简便运算吧!

  出示第62页的“试一试”,学生尝试简便运算。

  指名学生板演。

  评讲:你能说出计算时运用了乘法的什么运算律吗。

  小结。(略)

  【说明:通过教师富有启发性的谈话,引导学生自觉推想乘法运算律的价值,并通过实践获得体验,使学生顺利地把在加法运算中学到的简便方法迁移到乘法的简便运算中来。】

  四、巩固练习拓展提高

  1.做“想做做做”第2题。

  观察:你发现每一组题的上、下两道算式有什么联系?

  谈话:每组的两道题,你可以任选一道题进行计算,看谁既会选又会算!

  提问:你能说出算得又对又快的理由吗?

  【说明:让学生不计算发现上下两道题的异同,并给学生选择算一道题的权利,既顺应了学生自觉“求简”的学习需要,又使应用乘法运算律进行简便运算成为学生的主动追求和自觉行为。】

  2.做“想想做做”第3题。

  谈话:你运用乘法的运算律使计算简便吗?比一比谁算得又对又快!

  组织交流。

  3.用简便方法计算。

  25×6×4×1525×125×32

  学生练习后,组织交流。

  五、引发联想,鼓励探究

  谈话:同学们,今天我们通过猜想、举例验证的方法研究了乘法的交换律和结合律,既然加法和乘法都有交换律和结合律,那你有没有想过减法和除法会有什么运算规律呢?你可以选择下面的一组或几组算式先计算,然后再观察、比较,看你能不能有新的猜想?你有办法验证你的猜想吗?

  127-53-27218-69-31

  127-27-53218-(69+31)

  72÷3÷854÷3÷2

  72÷8÷354÷(3×2)

  【说明:教师富有启发性的语言,让学生产生由此及彼的联想,同时激励学生选择一组或几组算式通过计算、观察、比较、猜想,来进一步探究减法和除法中的运算规律。不但让学生学生享受到了“跳一跳,摘果子”的快乐,同时又能让学生带着数学思考走出课堂,实现了课尽而思考犹在的生动局面。】

加法交换律和结合律教学设计3

  【教学内容】

  西师版四年级下册数学教材第17~18页例1~2,练习四第1题。

  【教学目标】

  1.经历在计算中探索发现乘法交换律、结合律的.过程。

  2.理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。

  3.体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的能力。

  【教学重难点】

  在具体情景中探索发现乘法交换律、乘法结合律。

  【教学过程】

  一、复习旧知

  1.以前学过的加法运算律有哪些?

  加法交换律和加法结合律(学生回答)

  2.说一说,下面的等式用了什么运算律?

  80+a=a+80()20+30+40=20+(30+40)()

  3.通过预习,你知道下面的等式用了什么运算律吗?

  2×3=3×2()(2×3)×4=2×(3×4)()

  引出课题:乘法运算律。

  二、新课讲授

  1、讲解

  2×3=3×2

  观察并思考:

  (1)等号左边的算式和右边的算式有什么联系?

  (2)从上面的观察与分析中,你能发现什么规律?

  学生发现:两个因数交换位置,积不变。

  师引导学生得出乘法交换律。

  教师:你能用自己喜欢的方式表示乘法交换律吗?(学生独立思考后交流)

  教师:如果用a、b表示两个数,这个规律可怎样表示呢?(a×b=b×a)

  随堂练习:计算下面各题,用交换因数位置的方法进行验算。

  34×1626×37

  学生独立做,请两名学生上台板演。

  2讲解

  (2×3)×4=2×(3×4)

  观察并思考:

  (1)等号左边的算式和右边的算式有什么联系?

  (2)从上面的观察与分析中,你能发现什么规律?

  学生发现:每个算式只是改变了运算顺序,每排左、右两个算式计算结果相等,

  三个数相乘,先算前两个数的积或者先算后两个数的积,值不变。

  教师:谁知道这个规律叫什么?

  教师板书:乘法结合律。

  教师:如果用a、b、c表示3个数,可以怎样表示这个规律?

  教师板书:(a×b)×c=a×(b×c)。

  教师:这个规律就叫乘法结合律。

  小结:同学们,我们一起总结出了乘法交换律和乘法结合律,下面看同学们会不会用。

  三、课堂活动

  1.练习四第1题:学生独立完成,全班交流,说出依据。

  2.连线。

  (学生独立完成)

  23×15×217×(125×4)17×125×439×(25×8)39×25×823×(15×2)

  四、课堂小结

  今天这节课你都有哪些收获?还有什么问题?

  五、作业

  练习四第1、2题。

加法交换律和结合律教学设计4

  一、教学内容:

  北师大版四年级上册数学第二单元p45-p46

  二、教学目标:

  1、经历探索过程,发现乘法结合律和交换律,并用字母表示。

  2、在理解乘法结合律和交换律的基础上,会对一结算式进行简便计算。

  3、感受数学探索的乐趣,培养自主探索问题的能力。

  三、教学重、难点

  1、重点:探索、发现、理解和应用乘法结合律和交换律。

  2、难点:乘法结合律和交换律的探索过程。

  四、教学过程

  (一)口算比赛,激发学习兴趣

  1、出示口算题

  5×225×425×8125×8

  2、师:以后在计算乘法时,一般看到“5”想到2,看到“25”想到4,看到“125”想到8;因为这样的两个数相乘能整到十、整百、整千数,这样可以快速计算。

  3、谈话引入:我们在前面已学过乘法的计算,在教*算中,有许多有趣的规律,这节课请同学们和老师一起去探索,看看你能发现什么?

  (二)创设情境,发现问题

  1、多媒体出示情境图

  2、估一估

  师:请大家认真观察,估一估这个长方体是由多少个小正方体搭成的?

  3、算一算

  师:谁估计的准确呢?请同学们在本子上算一算,比一比看谁做的又对又快。

  4、交流算法。

  师:谁愿意把你的办法介绍给大家?学生汇报,汇报时说一说自己是怎样想的。

  师板书:(3×5)×4=60(个)

  3×(5×4)=60(个)

  (三)比较算式的特点,发现规律

  1、刚才两位同学不同的方法解决了这个问题,现在请同学们一起观察这两个算式,看看你能发现什么?

  2、学生汇报:略

  3、小结:(3×50)×4=3×(5×4)

  (四)提出假设,举例验证

  1、师:用别的三个数这样计算会不会结果也相同呢?请在本子上举例计算。

  2、学生举例

  同桌之间互相交流?

  3、集体交流

  谁愿意介绍一下你们小组举例的情况?

  (五)概括规律

  1、从刚才大家所举的例子看,每一组的结果都是相同的。这样的例子多不多?能举的完吗?

  2、如果用字母a、b、c分别表示乘法算式中的三个数字,你能写出所发现的规律吗?

  板书(a×b)×c=a×(b×c)

  板题:乘法结合律

  (六)运用规律,解决问题

  1、比较(3×5)×4=603×(5×4)=60两个算式,哪个更简便?

  2、看来运用乘法结合律可以使一些计算简便。

  3、练习:p46“试一试”的题目

  学生独立完成,集体订正。

  (七)探索乘法交换律

  1、出示两组数据

  4×5=5×412×10=10×12

  2、师:认真观察,看看你有什么新发现?

  3、学生汇报。

  4、学生举例验证。

  师:你能举出像这样的例子吗?

  5、师:如果用字母a、b表示两个数,你能写出发现的规律吗?

  6、板书:a×b=b×a

  板题:乘法交换律

  三、巩固练习

  1、(完成课本第46页练一练第1题)

  学生口答,集体订正。

  2、应用乘法结合律和交换律,快速计算下面各题。

  25×17×413×8×128(25×125)×(8×4)

  (1)学生独立完成,个别板演。

  (2)订正时让学生说说运用什么运算定律。

  四、总结:这节课你有什么收获?

  五、学生读课本第45、46页,质疑。

  六、作业:课本第46页第2题。

  乘法结合律乘法交换律

加法交换律和结合律教学设计5

  【教学内容】

  西师版四年级下册数学教材第17~18页例1~2,练习四第1题。

  【教学目标】

  1.经历在计算中探索发现乘法交换律、结合律的过程。

  2.理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。

  3.体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的能力。

  【教学重难点】

  在具体情景中探索发现乘法交换律、乘法结合律。

  【教学过程】

  一、复习旧知

  1.以前学过的加法运算律有哪些?

  加法交换律和加法结合律(学生回答)

  2.说一说,下面的等式用了什么运算律?

  80+a=a+80()20+30+40=20+(30+40)()

  3.通过预习,你知道下面的等式用了什么运算律吗?

  2×3=3×2()(2×3)×4=2×(3×4)()

  引出课题:乘法运算律。

  二、新课讲授

  1、讲解

  2×3=3×2

  观察并思考:

  (1)等号左边的算式和右边的算式有什么联系?

  (2)从上面的观察与分析中,你能发现什么规律?

  学生发现:两个因数交换位置,积不变。

  师引导学生得出乘法交换律。

  教师:你能用自己喜欢的方式表示乘法交换律吗?(学生独立思考后交流)

  教师:如果用a、b表示两个数,这个规律可怎样表示呢?(a×b=b×a)

  随堂练习:计算下面各题,用交换因数位置的方法进行验算。

  34×1626×37

  学生独立做,请两名学生上台板演。

  2讲解

  (2×3)×4=2×(3×4)

  观察并思考:

  (1)等号左边的算式和右边的算式有什么联系?

  (2)从上面的观察与分析中,你能发现什么规律?

  学生发现:每个算式只是改变了运算顺序,每排左、右两个算式计算结果相等,

  三个数相乘,先算前两个数的积或者先算后两个数的积,值不变。

  教师:谁知道这个规律叫什么?

  教师板书:乘法结合律。

  教师:如果用a、b、c表示3个数,可以怎样表示这个规律?

  教师板书:(a×b)×c=a×(b×c)。

  教师:这个规律就叫乘法结合律。

  小结:同学们,我们一起总结出了乘法交换律和乘法结合律,下面看同学们会不会用。

  三、课堂活动

  1.练习四第1题:学生独立完成,全班交流,说出依据。

  2.连线。

  (学生独立完成)

  23×15×217×(125×4)17×125×439×(25×8)39×25×823×(15×2)

  四、课堂小结

  今天这节课你都有哪些收获?还有什么问题?

  五、作业

  练习四第1、2题。


《加法交换律和结合律》教学设计 (菁选5篇)(扩展2)

——加法交换律和结合律教学反思3篇

加法交换律和结合律教学反思1

  加法的运算定律是运算体系中的普遍规律。为了让学生能够理解并掌握这一规律,以便为今后的应用服务。我在教学中从学生的已有知识经验的实际状态出发,通过抽象建模,大胆猜测,操作验证,合作总结这四个环节,让学生能够理解加法运算定律的含义,并从过程中体验成功的喜悦或失败的情感。

  本课我把凑整简算的思想贯穿始终,让学生从学习中体验选择简便的方法是学习的最好途径。对于小学生来说,运算定律的理解与运用是培养和发展学生抽象的极好时机。本节课,我引导学生在知识的形成过程中提升学生的思维能力,在课堂上充分调动学生积极性,让孩子们大胆猜想,举例验证、得出结论。纵观本课教学主要有以下几个特点:

  1、在复习引用中,巩固学生的思维基础。

  通过一组口算练习,让学生明确能够凑整十或整百数的两个数加起来比较简便,这个为后面学习结合律打下基础。

  2、大胆猜想,自主探究,培养学生独立思考的能力。

  在教授新课的过程中,我通过提问、设疑,让学生观察—猜测—举例—验证四个环节,同时通过小组合作得出结论。这样既培养了学生的抽象概括能力,同时让学生的思维得到了有效的训练和发展。

  3、多层次的巩固练习,有效提升学生的思维。

  习题设计能有效促进学生思维的发展,本节课在习题设计中,一共设计了四个环节:①基本练习(填空)②变式练习(判断)③巩固练习(计算)④发展提高等。让学生通过练习巩固本课所学内容。

  在教学中也存在以下不足:

  1加法结合律学习在教学中所占比率应加大,学生在学习中还有疑虑,没有学透。

  2、整堂课在时间安排上有些前松后紧,在加法交换律上时间过长,练习的时间相应较短,显得后面在练习中有些仓促。

  3、教师的语言过于*化,不适于中年级学生的年龄。

加法交换律和结合律教学反思2

  课程标准提出“让学生经历有效地探索过程”。教学中以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察猜想——举例验证——得出结论”这一数学学习全过程。基于以上理念本节课的教学我注意从教材出发,理解教材所要达到的教学目标,创造性地使用教材,调整了教材的知识结构,真正做到用教材教,而不是教教材。充分发挥出教师的主导性、学生的主体性。本节课打破传统的课堂教学结构,注重学生观察、比较和分析能力的培养,让学生从已有的生活经验出发,根据已有经验自主探索知识的形成过程。课堂上关注学生的个人体验,满足的学习需求,强化学生的积极情感,使学生不断获得成功的体验。我本着“以人为本,关注学生”的教学思想,试图建立“提出问题——解决问题——举出例子——总结归纳”的基本教学模式,让学生展开自主学习活动,学生在建模的教学活动中找到了数学学习的方法,使传统的“指导接收式”转变为“自主探究式”,充分体现课程改革的教学思想。 纵观本节课突出了以下几个特点:

  一、学习问题的产生激发了学生的探究的欲望。

  课堂上我从口算A、B两组竞赛题入手,让学生练习计算,比速度,让学生马上意识到算B组题的速度明显比A组题快,先声夺人,让孩子感受到简便算法的优越,接着教师引导:为什么B组题算得快,这其中蕴含哪些数学知识呢?这一问题马上激起了学生探究的欲望,学习问题的产生将学生自然带入到学习状态中,激发了学生强烈的探究欲望。

  二、情境的创设发散了学生的数学思维。

  教学新知前我让学生对课题“加法的运算定律”说说自己的理解,学生很自然地想到:我们今天要研究的是加法的一些运算规律,再由贴近学生的生活情境引入主题,让学生自由地提问,学生提出的`问题多数是用加法解决的问题,不仅培养了学生发散性的思维,还能让学生提出的问题直奔主题,老师的引导做到了有放有收,从而提高了学习效率。

  三、学法的指导体现了知识建模的过程。

  数学课标指出:在数学教学过程中,教师应注重渗透建模的思想。本节课我注重“授之鱼”,更注重“授之以渔”。先是和学生一起学习了加法的结合律,总结出了四步学习法:提出问题---解决问题---举出例子----总结归纳。建立这样的模型后让学生按照这样的方法展开自学活动。本节课的教学并不是仅仅让学生掌握加法的运算定律,更重要的是要掌握解决问题的方法,培养学生观察、分析、比较、概括的能力。整节课对学生有“扶”又“放”,在教会孩子知识的同时,也教会了孩子的学习方法。这四步学习法对后续一些运算定律的学习,一些规律的推理和验证都用重要的意义。

  四、以学生为主体创造性地使用教材。

  本节课的教学内容如果按教材的编排程序去学习是体现了知识的学习由浅入深,循序渐进。但我觉得学生自学加法结合律有一定的难度,需要教师的引导才能学懂、学透,而加法交换律学生很容易通过老师的“自学提示”展开学习,所以我大胆地对教材的内容进行了调整,先领学生学习加法结合律,而加法交换律我放手让学生根据“四步学习法导学单”进行自学,学生的学习效果非常好。课堂上做到了以学定教,立足于学生的学,立足于学生的终生学习和可持续性发展。

  不足的是,在使用导学单进行导学中,对学生的学情了解不透,导致导学单中某些问题的设置起点偏高,拖延了教学时间,最后的练习量过大,这点是在我精心准备教案设计和课件的同时,留下的最大遗憾。


《加法交换律和结合律》教学设计 (菁选5篇)(扩展3)

——数学《加法交换律和结合律》教学设计 (菁选3篇)

数学《加法交换律和结合律》教学设计1

  教学内容:

  青岛版小学数学四年级下册第一单元信息窗三13页至14页的内容。

  教学目标:

  1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示。

  2.在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

  3.让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心。

  4.初步形成独立思考、合作交流的意识和习惯。

  教学重点:

  理解掌握加法的交换律和结合律,并会用字母表示他们。

  教学难点:

  引导学生通过讨论,计算从而自己发现并总结出加法交换律、加法结合律的过程。

  教学准备:

  课件、投影仪、卡片

  教学过程:

  一、拟定导学提纲,自主预习

  (一)创设情境

  1.谈话:同学们,长江,黄河就像两条长龙盘卧在*大地,特别是黄河被称为我们的“母亲河”。这几天我们一直在学习有关黄河的知识,了解到了许多有关黄河的信息,除了我们学过的,你还了解到那些有关黄河的知识?(学生根据课前调查回答)想不想再多了解一些?

  课件展示情境录像:(课件展示的关键是让学生从中知道黄河流域的小知识,例如上游:青藏高原黄土高原内蒙古高原中游:黄土高原下游:华北*原等小知识)最后大屏幕定格在信息窗三的情境图。

  以上展示在大家面前的就是黄河流域图。教师板书:黄河流域

  请同学们仔细观察,你能获得了哪些数学信息?

  学生观察汇报,

  生汇报:根据黄河流域图我了解到黄河分为上游、中游和下游(1、黄河上游长3472千米,中游长1206千米,下游长786千米;2、黄河上游流域面积是39万*方千米,中游是34万*方千米,下游是2万*方千米;)

  教师适时板书相应的信息条件。

  2.你能根据这些信息提出哪些数学问题呢?学生口答。教师板书出问题。

  问题(1)黄河流域的面积是多少万*方千米?

  问题(2)黄河全长多少千米?

  (二)出示学习目标

  同学们提出了这么多有价值的问题,那么今天我们将解决那些问题呢?请看本节课的学习目标:

  1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示,能够运用所学的运算定律进行简算。

  2.在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

  (三)出示自学指导

  为了能够更好地解决今天的学习目标,老师给大家提供了一些指导意见,请看自学指导。

  (自学指导:请同学们认真看教科书第13—14页的信息窗3的第一个红点和小电脑的内容,重点看解决问题的过程,思考:(1)怎样解答同学们提出的问题?哪种方法简单?(2)什么是加法的结合律?怎样用字母式表示?(3)什么是加法交换律?怎样用字母式表示?

  (5分钟后,比一比谁汇报得最清楚。)

  (四)学生自学

  师:下面请同学们根据“自学指导”开始自学,比一比谁看书最认真,谁自学效果最好!(师目光巡视每一个学生,特别要关注特困生。)

  二、汇报交流,评价质疑

  (一)调查

  师:看完的同学请举手?

  (二)全班汇报

  1.问题一:黄河流域的面积是多少万*方千米?

  学生在列式解答时,可能会出现两种情况:

  (1)39+34+2和34+2+39

  (2)(39+34)+2和39+(34+2)。

  2.问题二:黄河全长多少千米?

  学生可能出的情况:

  (1)、3470+1210+790和1210+790+3470

  (2)(3470+1210)+790和3470+(1210+790)。

  今天我们要学的知识就在这两组算式中。

  (设计意图:充分运用教材情境图,引导学生获取信息,提出加法问题。在此基础上让学生列出算式。通过这两组算式学习今天的新知识,为下面学习埋下了伏笔。学生会马上把精力投入到这两个算式的研究中,激发了学生探究的兴趣。)

  3.观察、比较、发现规律

  (1)观察这些算式,你们发现了什么?

  生汇报:每组算式运算的数相同,运算的结果相同,运算的顺序不同。

  例如:

  (39+34)+2=39+(34+2)

  (3470+1210)+790=3470+(1210+790)。

  (2)是不是所有的三个数相加都符合这些规律呢?举例验证一下吧:(每个学生在练习本上写出几组这样的算式,看结果怎样)

  生汇报:

  (35+63)+15=35+(63+15)

  (325+82)+18=325+(82+18)…

  (3)把你的发现告诉大家?(将学生的举例用实物投影展示)

  (三个数相加时,先把前两个数相加,或先把后两个数相加,和不变。)

  师指出这条规律叫做加法结合律。

  (4)你能用你喜欢的方法表示这加法结合律吗?

  学生用各种符号、字母表示这个运算定律。最终教师指出,在数学上,我们统一用a、b、c来表示三个加数,因此加法结合律可以写作(a+b)+c=a+(b+c)。学生齐读,教师板书在黑板上

  小结:刚才我们通过解决两个问题发现并归纳出了加法结和律。

  (设计意图:本环节经历了猜测—举例—验证—得出结论的过程,无形之中培养了学生一种数学思想。)

  4.学法迁移,探索加法交换律。

  那么,加法运算中还有其他的规律吗?想不想知道?我们先来做个游戏吧。

  (1)游戏:找朋友。

  在每个小组中都有一个算式卡片,请同学们小组合作,仔细想一想,算一算,它应该是屏幕上哪个算式的好朋友?为什么?

  (2)同学们真棒,很快就为自己的算式找到了合适的朋友,还有谁的算式没有找到朋友?你能根据刚才同学们的方法给他介绍一个合适的好朋友吗?

数学《加法交换律和结合律》教学设计2

  [教材简解]

  《加法交换律和加法结合律》是小学数学第七册第六单元第1课时的内容,这是学生第一次接触运算定律,对于加法交换律的内容,从知识的层面上看,学生学习、理解、运用起来比较容易。而且在以往的学习过程中也已经渗透,让学生积累了一定的感性认识。学习加法的运算定律,为以后学习用字母表示数打下初步基础,同时也为简便运算打下基础。

  [目标预设]

  1、使学生经历观察、猜想、验证、结论的探索加法运算律的过程,结合具体实例,理解并掌握加法的交换律和结合律,会运用加法交换律进行加法验算.

  2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。

  3、让学生在数学学习过程中获得探究的乐趣和成功地喜悦,进一步增强对数学学习的兴趣和信心,初步形成独立思考、合作交流的意识和习惯。

  4、通过自主探究、相互合作获得成功的体验,提高学习数学的兴趣。

  [重点、难点]

  1、让学生在探索中经历运算律的发现过程。

  2、理解不同算式间的相等关系,发现规律,概括运算律。

  [设计理念]

  1、尊重儿童的认知规律,注重新旧知识的联系,引导学生在自主、合作、探究中巩固旧知识,发现新知识,掌握新方法。

  2、以学生的“最近发展区”为向导,精心设计课堂教学策略,由浅入深,由易到难,循序渐进,预设出合理的教学流程与思维坡度。

  3、本着真实有效的宗旨,让课堂焕发生活的活力,让每个孩子在民主、*等的课堂中得到不同的发展。并注重教师与学生对话,学生与学生对话,在对话中加强情感交流,使得课堂真正成为师生互动、心灵对话的舞台,从而让教师与学生都获取丰富的,积极的情感体验,进一步增强学生学习数学的兴趣。

  [设计思路]

  1、展示生活题材的数学例题,唤起学生对旧知的回忆,从而初步感受规律。

  2、充分感知,让学生在具体的数学活动中观察,比较、不断地思考与建构。得出规律,并能运用规律。

  3、帮助学生反思学习过程,并总结数学思想与方法,并让学生尝试,通过小组合作学习,让学生相互启发,相互补充,完成新知识的学习。进一步培养学生的自主探究意识。

  4、总结归纳。通过对一节课学习的"回顾,让学生谈谈收获,尤其是在数学的思想与方法上做出评价。

  [教学过程]

  一、创设情境,激趣导入

  1、出示高斯小学的故事:1+2+3+4+5+6……+97+98+99+100=?

  2、引入新课:高斯为什么能快速的找到答案,计算加法时是不是有什么运算规律呢?我们今天就一起来探索这个问题。

  板书:加法运算规律

  二、自主探索,寻找规律(加法交换律)

  (一)出示情境图

  四年级的同学们在开展跳绳和踢毽子的活动,从图中你获得了那些数学信息呢?根据这些数学信息,你能提出用加法计算的数学问题吗?(多指名说)

  (二)、解决问题,探究规律

  1、出示问题:

  (1)跳绳的有多少人?

  (2)女生共有多少人?

  (3)参加活动的一共有多少人?

  2、师生研究解决第一个问题,揭示加法交换律。

  (1)指名口头列式:28+17;还可以怎样列式?17+28;说说各算式表示的意思。

  (2)这两个式子相等吗?为什么?(计算结果相等)(都是求跳绳的有多少人)那我们就可以用“=”把它们连接起来。教师板书:28+17=17+28,指名读算式。

  (3)解答:女生共有多少人?板书等式:17+23=23+17

  (4)仔细观察这两组等式左右两边的算式,思考:什么变了?什么没变?你有什么想法?(两个数的位置变了,数据、运算符号、结果没有变)

  (5)这只是猜想,这种猜想在其他加法运算中也存在吗?你还能举几个像这样的例子吗?(指名说,教师板书。)这样的例子写的完吗?

  (6)仔细观察这些等式,你有什么发现?能找出它们共同的规律吗?用自己的话说一说。全班交流。

  (7)师:刚才老师用省略号把无数个这样的等式藏了起来,你还能用自己喜欢的方式比如字母、符号、文字等方式把这个规律简明的表示出来吗?试试看。

  交流介绍:数学中一般用字母来表示:a+b=b+a,这里的a可以表示任意一个加数,b可以表示任意的另一个加数。这也是我们刚才通过观察、猜想、验证所得到的结论。这个规律叫加法交换律.这是我们今天要学习的第一个运算律。(板书课题)

  3、其实加法交换律对于我们并不陌生,回顾一下,我们以前学习什么知识时也用了加法交换律?想一想加法是怎样验算的?

  4、巩固练习,完成自主练习单(一)

  自主练习单(一)

  1、根据加法交换律填空。

  23+35=35+()a+12=12+()

  23+()=178+()()+98=()+56()+()=()+()

  2、计算下面各题,并用加法交换律进行验算。

数学《加法交换律和结合律》教学设计3

  【教学内容】

  国标本苏教版四年级上册P56—57例题,完成P58的“想想做做”。

  【教学目标】

  1、使学生经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,初步感知加法运算律的价值,发展应用意识。

  2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。

  3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

  【教学过程】

  一、故事导入,激发兴趣

  (播放《朝三暮四》视频)师:同学们,听了这个故事你想说什么?猴子很笨,同学们很聪明,栗子的总颗数有没有变化呢?什么发生变化?

  引入:这个故事的名字叫《朝三暮四》,在数学中也有类似《朝三暮四》故事里的规律,同学们想不想研究一下?

  二、创设情境,联系生活

  谈话:天气渐渐转凉,学校要组织大家参加冬季比赛了,看,四年级同学正在操场上开展体育活动。

  (课件出示例题情境图)

  提问:从图中你了解到哪些数学信息?(指名说一说)

  提问:你能提出用加法计算的问题吗?

  学生提到的问题可能有:跳绳的有多少人?女生有多少人?参加活动的一共有多少人?

  谈话:同学们提出的问题都非常好,下面我们先来解决第一个问题。

  三、探索加法交换律,初步感知

  课件出示问题(1)要求参加跳绳的有多少人?

  提问:应该怎样列式?

  指名口答,教师板书:28+17=45(人)

  提问:还可怎么列式?板书:17+28=45(人)

  提问:这两道算式都是求什么的人数?(跳绳的人数)结果都是多少?

  谈话:既然得数相同,我们就可以把这两个算式用“=”连接起来。改写成28+17=17+28

  板书:28+17=17+28(学生齐读这个等式)

  提问:比较这两个算式,你有什么发现?(引导学生说出:加数相同,得数也一样,只不过是把加数的位置调换了一下)。

  提问:你能照样子再写出几个像这样的等式吗?试试看。(学生动笔写,指名学生回答,教师把学生说的等式有序地板书在黑板上,板书三个)。

  提问:像这样的等式你能写得完吗?

  谈话:既然写不完,可以用省略号表示(板书省略号)

  提问:请同学们仔细观察这些等式,你发现每一组的两个算式都有什么共同的地方?有什么不同的地方(同桌交流)?

  提问:你能用自己喜欢的方法表示出像这样的等式吗?可以用符号、字母、文

  字等等表示,试试看。

  学生写在练习本上,教师巡视,并作相应辅导。教师实物投影出学生写得情况。

  师:在数学上,我们通常是用字母a、b来表示两个加数,说来说说怎么表示?

  生:a+b=b+a

  提问:a和b分别代表什么?

  小结:两个数相加,交换这两个加数的位置,和不变。这是加法运算律中的一条很重要的规律,我们这节课就是来研究加法运算中的规律。

  板书课题:加法的运算律

  师:下面老师想考考大家。

  考考你:(1)您能在()里填上合适的数字吗?

  96+35=35+()204+57=()+204

  指名回答,为什么?

  (2)下面的等式符合加法交换律吗?为什么?

  75+25=25+75 46+59=46+59 90+10=5+95

  (没有交换加数的位置;等号两边的加数不同。)

  (3)同学们学的真不错,接下来我们来玩个游戏,看看同学们的反应快不快。

  游戏:对口令

  师:83+17=生:17+83=

  97+44=35+65=

  88+75=300+600=

  a+b=785+68=

  (4)提问:同学们,想一想:过去我们学过的计算中,哪些地方应用过加法交换律?

  下面一道题357+218,请同学们计算并用加法交换律进行验算。

  四、探索加法结合律,自主合作

  谈话:同学们,刚才我们通过解决“跳绳的有多少人”这个问题,得到了加法交换律,现在我们再来研究其他同学提到的问题,看看有什么发现。

  出示问题(2):参加活动的一共有多少人?

  提问:你会列综合算式解决这个问题吗?

  指名回答,教师板书:28+17+23


《加法交换律和结合律》教学设计 (菁选5篇)(扩展4)

——《加法交换律》教学设计3篇

《加法交换律》教学设计1

  教学内容:

  青岛版小学数学四年级下册第一单元信息窗三13页至14页的`内容。

  教学目标:

  1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示。

  2.在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

  3.让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心。

  4.初步形成独立思考、合作交流的意识和习惯。

  教学重点:

  理解掌握加法的交换律和结合律,并会用字母表示他们。

  教学难点:

  引导学生通过讨论,计算从而自己发现并总结出加法交换律、加法结合律的过程。

  教学准备:

  课件、投影仪、卡片

  教学过程:

  一、拟定导学提纲,自主预习

  (一)创设情境

  1.谈话:同学们,长江,黄河就像两条长龙盘卧在*大地,特别是黄河被称为我们的“母亲河”。这几天我们一直在学习有关黄河的知识,了解到了许多有关黄河的信息,除了我们学过的,你还了解到那些有关黄河的知识?(学生根据课前调查回答)想不想再多了解一些?

  课件展示情境录像:(课件展示的关键是让学生从中知道黄河流域的小知识,例如上游:青藏高原黄土高原内蒙古高原中游:黄土高原下游:华北*原等小知识)最后大屏幕定格在信息窗三的情境图。

  以上展示在大家面前的就是黄河流域图。教师板书:黄河流域

  请同学们仔细观察,你能获得了哪些数学信息?

  学生观察汇报,

  生汇报:根据黄河流域图我了解到黄河分为上游、中游和下游(1、黄河上游长3472千米,中游长1206千米,下游长786千米;2、黄河上游流域面积是39万*方千米,中游是34万*方千米,下游是2万*方千米;)

  教师适时板书相应的信息条件。

  2.你能根据这些信息提出哪些数学问题呢?学生口答。教师板书出问题。

  问题(1)黄河流域的面积是多少万*方千米?

  问题(2)黄河全长多少千米?

  (二)出示学习目标

  同学们提出了这么多有价值的问题,那么今天我们将解决那些问题呢?请看本节课的学习目标:

  1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示,能够运用所学的运算定律进行简算。

  2.在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

  (三)出示自学指导

  为了能够更好地解决今天的学习目标,老师给大家提供了一些指导意见,请看自学指导。

  (自学指导:请同学们认真看教科书第13—14页的信息窗3的第一个红点和小电脑的内容,重点看解决问题的过程,思考:(1)怎样解答同学们提出的问题?哪种方法简单?(2)什么是加法的结合律?怎样用字母式表示?(3)什么是加法交换律?怎样用字母式表示?

  (5分钟后,比一比谁汇报得最清楚。)

  (四)学生自学

  师:下面请同学们根据“自学指导”开始自学,比一比谁看书最认真,谁自学效果最好!(师目光巡视每一个学生,特别要关注特困生。)

  二、汇报交流,评价质疑

  (一)调查

  师:看完的同学请举手?

  (二)全班汇报

  1.问题一:黄河流域的面积是多少万*方千米?

  学生在列式解答时,可能会出现两种情况:

  (1)39+34+2和34+2+39

  (2)(39+34)+2和39+(34+2)。

  2.问题二:黄河全长多少千米?

  学生可能出的情况:

  (1)、3470+1210+790和1210+790+3470

  (2)(3470+1210)+790和3470+(1210+790)。

  今天我们要学的知识就在这两组算式中。

  (设计意图:充分运用教材情境图,引导学生获取信息,提出加法问题。在此基础上让学生列出算式。通过这两组算式学习今天的新知识,为下面学习埋下了伏笔。学生会马上把精力投入到这两个算式的研究中,激发了学生探究的兴趣。)

  3.观察、比较、发现规律

  (1)观察这些算式,你们发现了什么?

  生汇报:每组算式运算的数相同,运算的结果相同,运算的顺序不同。

  例如:

  (39+34)+2=39+(34+2)

  (3470+1210)+790=3470+(1210+790)。

  (2)是不是所有的三个数相加都符合这些规律呢?举例验证一下吧:(每个学生在练习本上写出几组这样的算式,看结果怎样)

  生汇报:

  (35+63)+15=35+(63+15)

  (325+82)+18=325+(82+18)…

  (3)把你的发现告诉大家?(将学生的举例用实物投影展示)

  (三个数相加时,先把前两个数相加,或先把后两个数相加,和不变。)

  师指出这条规律叫做加法结合律。

  (4)你能用你喜欢的方法表示这加法结合律吗?

  学生用各种符号、字母表示这个运算定律。最终教师指出,在数学上,我们统一用a、b、c来表示三个加数,因此加法结合律可以写作(a+b)+c=a+(b+c)。学生齐读,教师板书在黑板上

  小结:刚才我们通过解决两个问题发现并归纳出了加法结和律。

  (设计意图:本环节经历了猜测—举例—验证—得出结论的过程,无形之中培养了学生一种数学思想。)

  4.学法迁移,探索加法交换律。

  那么,加法运算中还有其他的规律吗?想不想知道?我们先来做个游戏吧。

  (1)游戏:找朋友。

  在每个小组中都有一个算式卡片,请同学们小组合作,仔细想一想,算一算,它应该是屏幕上哪个算式的好朋友?为什么?

  (2)同学们真棒,很快就为自己的算式找到了合适的朋友,还有谁的算式没有找到朋友?你能根据刚才同学们的方法给他介绍一个合适的好朋友吗?

《加法交换律》教学设计2

  设计理念:生活经验是小学生学习数学的宝贵财富,也是他们进行数学探索的基础。教师应充分利用学生已有的生活经验,让他们在此基础上实现对数学的再创造,切实体验数学与生活的联系,经历数学知识发生、发展和形成的过程,提高学生应用数学解决实际问题的能力。

  教材分析:教材从情境引出例题,帮助学生体会运算定律的现实背景,让学生借助解决实际问题,进一步体会和认识加法交换律,使学生经历由个别到一般,由具体到抽象的认知过程,引导学生由感性认识上升到一定的理性认识。

  教学目标:探索和理解加法交换律,并能够用字母来表示加法交换律;经历探索运算定律过程,通过对实际问题的解决,进行比较和分析,发现并概括出加法交换律;在数学活动中获得成功的体验,培养学生独立思考和探究问题的意识和能力。

  教学准备:多媒体课件。

  教学过程:

  一、在情境中初步感知规律

  1.导入故事《朝三暮四》,引发学生思考。根据学生回答板书:

  3+4=7(个)4+3=7(个)3+4=4+3

  2.创设问题情景。出示主题图,引导学生观察,图中告诉了我们哪些信息?我们要解决的问题是什么?

  3.尝试解决问题。学生独立解决问题,根据学生解答板书:

  40+56=96(千米)56+40=96(千米)40+56=56+40

  引发猜想:是否任意两数相加,交换位置,和都不变?

  二、在举例中验证规律

  1.交流:有了猜想,我们还得验证。你打算怎么验证?

  2.学生举例验证,教师巡视指导。

  三、在比较中概括规律

  1.同学们仔细观察列举出的等式,说一说你发现了什么?你能用自己的话说出你发现的规律,并给它命名吗?(两个加数交换位置,和不变。这叫加法交换律。)

  2.让学生用自己喜欢的方式表示加法交换律。用语言表达加法交换律比较麻烦,怎样表示既简单又清楚呢?试一试,用你喜欢的符号、字母或图形表示两个加数。

  四、在类比中拓展规律

  1.引导学生由加法类比到减法、乘法和除法,并自觉形成关于减法、乘法和除法中是否有交换律的三个新猜想。

  2.学生选择部分猜想,举例进行研究。教师参与,适时给予指导。

  3.交流:哪一种猜想是正确的,你们是怎么举例验证得出结论的?教师板书若干例子,进而得出结论。

  4.探讨:减法和除法中有交换律吗?学生交流后,引导思考:为什么只要举一个反例就能推翻猜想?

  五、在应用中深化规律

  1.请同学们想一想,以前学过的知识中哪些地方用到过加法交换律?

  2.下面我们就来比一比,看谁学得最好。

  (1)你能在括号里填上合适的数吗?

  300+600=()+()()+55=55+420 ()+65=()+35

  (2)仔细看一看,下面的算式符合加法交换律吗?

  270+380=380+270 b+800=800+b

  (3)运用加法交换律,你能写出几个算式?写写试试吧。

  25+49+75=()+()+()

  学生写出算式以后,让学生观察这些算式,哪两个数交换了位置?在这些算式中,你认为哪一道计算起来比较简单?说说你的想法。

  六、在反思中深化理解

  通过这节课的学习,你有哪些收获?说一说自己表现最好的方面。

  (责任编辑付淑霞)

《加法交换律》教学设计3

  教学内容

  教材P28页例1,P30页练习相关习题。

  教学目标

  1、知识与技能:

  结合具体的情境,引导学生认识和理解加法交换律的含义。

  2、过程与方法:能用字母式子表示加法交换律,初步学会应用加法交换律进行一些简便运算。

  3、情感态度与价值观:

  ①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。

  ②培养学生观察,比较,抽象,概括的初步思维能力。

  教学重点

  认识和理解加法交换律的含义。

  教学难点

  引导学生抽象,概括加法交换律。

  教学用具

  多媒体课件。

  教学过程

  一、自主学习

  (一)出示自学提纲

  自学提纲(教材P28页例1,并完成自学提纲问题,将不会的问题做标注)

  1、根据例1情境图中信息列出算式。

  2、用你喜欢的方法尝试计算

  3、同桌交流自己的算法

  4、教师板书出学生的算式及答案

  40+56=96(千米) 56+40=96(千米)

  5、对比上面的两道算式,你发现了什么?用自己的话说一说。

  (二)学生自学(学生对照自学提纲,自学教材P28页例1,并完成自学提纲问题,将不会的问题做标注)

  (学生自学,教师在不干扰学生的前提下巡回指导,发现共性问题,以掌握学生学情)

  (三)自学检测

  1、填空

  387+425=( )+ 387 525+( )=137+ 525

  300+600=( )+( ) ( )+65=( )+35

  甲数+乙数=( )+( ) 偶数+( )=奇数+( )

  2、连线

  56+68 50+B

  B+50 68+56

  二、合作探究

  (一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解。)

  (引导学生正确地计算,鼓励学生分工合作,探索交流,教师巡回辅导,发现、收集学生存在的问题)

  (二)师生互探

  1、解答各小组自学中遇到不会的问题。

  (1)让学生提出不会的问题,并让学生解决。

  (2)教师引导学生解决学生还遗留的问题。

  (3)如何用字母表示加法交换律和结合律?

  (4)用字母表示这些运算定律有什么优点?

  2、教师有针对性地请不同做法的同学汇报自己的解题思路与方法。

  三、达标训练

  1、填空题。

  (1)360+482=( )+ 360 128+275=125+( )

  (2)( )+ 78 =78 +149 133+( )=125+133

  2、连线。

  38+175 47+B

  B+47 175+38

  3、简便计算下面各题。

  89+91+11 268+147+32

  课堂小结:谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)

  四、堂清检测

  (一)出示检测题(1—2题必做,3题选做,4题思考题)

  1、根据加法交换律填空。

  (1)450+320=( )+ 450 65+95=95+( )

  (2)( )+ 100 =100+150 250+( )=125+( )

  2、下面的哪些算式符合加法交换律。

  (1)84 + C = B + 84

  (2)10 + 20 + 30 + 40 =10 + (20 + 30) + 40

  3、简便计算。

  81+78+19 679+132+121

  (二)堂清反馈:

  作业布置

  教材P30页习题。

  板书设计

  加法交换律

  40+56=96(千米) 56+40 =96(千米)

  a+b = b+a


《加法交换律和结合律》教学设计 (菁选5篇)(扩展5)

——《加法交换律和结合律》说课稿3篇

《加法交换律和结合律》说课稿1

  加法的交换律和结合律一课在人教版和苏教版中都是布置在四下上这个内容,在现在的苏教国标版教材也是布置在四年级。加法的交换律和结合律一课是属于第二学段中的数的运算中的一个重要内容。是在同学经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。同学从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律结合律的基础。

  新教材布置这两个运算律都是从同学熟悉的实际问题的解答引入,让同学通过观察、比较和分析,找到实际问题不同解法之间的一起特点,初步感受运算规律。然后让同学根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示动身现的规律,笼统、概括出运算律。教材有意识地让同*用已有经验,经历运算律的发现过程,让同学在合作与交流中对运算律的认识由感性逐步发展到理性,合理地构建知识。新教材教学目标:

  1、知识技能目标:

  使同学理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。使同学在学习用符号、字母表示自身发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高笼统思维能力。

  2、过程方法目标:

  使同学经历探索加法交换律和结合律的过程,通过对熟悉的实际问的解决,进行比较和分析,发现并概括出运算律。

  3、情感、态度、价值观目标:

  使同学在数学活动中获得胜利的体验,进一步增强对数学的兴趣和信心,初步形成独立考虑和探究问题的意识、习惯。

  教学重点:使同学理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

  教学难点:使同学经历探索加法结合律和交换律的过程,发现并概括出运算律。

  旧教材教学目标:

  1、使同学理解并掌握加法交换律和结合律。

  2、使同学理解和掌握加法交换律与加法结合律的异、同点,和其特点。

  3、能利用加法的交换律进行加法的验算。

  4、培养同学观察、概括、分析推理的能力。

  教学重点:

  引导同学概括、总结加法的加法交换律和结合律,会用字母表示。

  教学难点:

  在理解的基础上概括加法交换律和结合律,并能用文字和字母表示。

  从新旧教材的目标比较以和例题设计中可以看出两者的"目标定位是不一样的。

  1.旧教材的目标比较单一,主要的目标是知识技能方面的目标,如能口头表达加法交换律和结合律的意义,能用字母去表示,并会运用于验算。新教材的目标设定不只仅体现了知识技能方面的目标,更多的体现了过程和方法,情感态度方面的目标以和对于数学思想方法(不完全归纳法,符号感)的渗透。目标的设定是使各项目标与具体的学习相结合起来,成为一个有机的整体。

  2.旧教材的目标体现不出教学的方法和同学的学法,而新教材的教学目标中能体现出一些具体的做法,如通过对熟悉的实际问的解决,经历探索加法交换律和结合律的过程,数学活动过程始终作为重点贯穿与教学中。

  韩玲老师在上加法的交换律和结合律这课时,也充沛考虑到了新旧教材目标定位的不同。从课堂的引入韩老师就以最贴近生活的实际体育要闻十运会金牌数为题,一下子激起了同学学习的“兴奋点”,很自然的进入了后面的学习。在同学提出一些列的数学问题并列出算式之后,教师开始引导同学比较和分析这两道算式之间有什么相同的地方?有什么不同的地方?可以用等号连接吗?问:观察黑板上的这三道等式,你发现了什么规律?问:是不是其他的数之间也存在这种规律呢?请你再举一个这样的例子验证验证。举了这么多的例子,你找到规律了吗?这个规律用语言叙述比较长,你能够用自身喜欢的方式把这个规律简单明了地表达出来吗?(生口述,教师板书)在这样一个教师引导,同学进行比较、分析、举例、验证,表达的过程中,充沛发挥了同学主体的作用,也让同学感受到了发现规律的一般过程,从而达到经历过程,讨论提升,归纳概括的目的。结合律的教学过程则更多的体现了同学自主探索,推导,验证的一个完整过程。

  新教材的目标设定和教学过程,更多的体现了动态生成,寓数学考虑,探究,发现于一体的数学活动过程,教师只有掌握住了这个精髓才干去上好课,发展同学的综合能力。


《加法交换律和结合律》教学设计 (菁选5篇)(扩展6)

——加法结合律说课稿3篇

加法结合律说课稿1

  【学习内容】

  加法结合律。教科书第57页。

  【文本分析】

  加法结合律是《运算律》单元第一课时的第二个例题,这节课的教学内容包括加法交换律和加法结合律。这节课是在学生经历了一系列关于四则运算的学习后,对于运算律有了一定的感性认识的基础上,进一步通过一些实例来引导学生进行概括。而加法结合律则是在学习了加法交换律的基础上展开的。本课的教学重点在于让学生在探索中经历运算律的发现过程,理解不同算式间的相等关系,发现规律,概括运算律。但概括运算律则是本课的教学难点。

  教学重点:使学生理解并掌握加法结合律,能用字母来表示加法结合律。

  教学难点:使学生经历探索加法结合律的过程,发现并概括出运算定律。

  【学习目标】

  1、让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。

  2、通过学生的自主观察、比较、分析、归纳,合作交流等学习活动,使学生经历探索加法结合律的过程,进行比较和分析,发现并概括出运算律。

  3、让学生用符号和字母表示出发现的规律,抽象、概括出运算律,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地建构知识。

  4、通过学生积极参与规律的探索、发现和归纳,使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考问题的意识和习惯。

  【导学过程】

  教学加法结合律。

  1、初步感知

  课的开始出示例题图,通过解决“参加活动的一共有多少人?”得出一个等式,让学生有一个初步的感知,为接下来进一步进行加法结合律的研究做好铺垫。

  (28+17)+23=28+(17+23)

  接下来,再出示两组算式,请学生算一算每组两道算式的结果是多少?○里应该填什么符号?积累感性认识的素材。

  (45+25)+13○45+(25+13);(36+18)+22○36+(18+22)

  2、观察、思考、交流

  陶行知先生提出了“六大*”的主张:*小孩子的头脑、*小孩子的双手、*小孩子的嘴、*小孩子的空间、*小孩子的时间及把小孩子的"双手、嘴、空间和时间都*出来。“让学生能够自己去探索、自已去辨析、自己去历练,从而获得正确的认识和熟练的能力。”

  “发生认识论”的创立者皮亚杰认为知识、智力的个体发生离不开认识主体的自主活动。只有当学生的能动性充分发挥时,他的聪明才智才能充分表现出来,教学质量才有真正提高的可能。

  这个“学生十分钟”的环节我们设计让同学们在学案的指导下自主进行观察、思考和交流。这样设计基于两点原因:一是学生前面已经有了一系列关于四则运算学习的基础,积累了大量的感性认识,具备了探究的知识基础;二是在加法交换律的学习中,学生已经有了一定学习运算律的经验,掌握了一些探究运算律的方法,具备了探究的能力基础。

  基于以上两点,我们把加法结合律的探究放手给学生,让学生在学案的指导下独立开展探究活动。

  学案中我们设计了以下几个环节:

  (1)观察

  每组的两道算式有什么相同的地方?有什么不同的地方?

  这三组算式有什么共同的特点?

  (2)仿写

  照样子再写出一组这样的式子,填在上面的横线上。

  (3)发现规律

  从这些例子中发现了什么规律?再用自己喜欢的方式表示在下面的横线上。

  在最后交流的环节,我设计了两个层次:一是小组交流,希望在这个环节中能够充分发挥优生的作用,让学生教学生,同时由于前面有充分的思考时间,学习能力较弱的学生也有话可说,而不是只能做一个听众;二是全班交流,这段时间仍然是交给学生的,代表小组发言的孩子主讲,把他们小组的讨论进行汇报,再由其他的孩子进行纠正和补充,全面调动学生的眼、耳、脑,达到最佳的教学效果。

加法结合律说课稿2

  一、说教材

  (一)教材分析

  “加法交换律和加法结合律”是国标版苏教版小学四年级上册第8 单元中的内容。本节内容安排了三个例题,分5课时进行教学,今天是其中的第一课时。加法交换律和加法结合律是运算中进行简便计算的两种必要的理论依据,他们是学生正确、合理、灵活地进行计算的思维素质,掌握的好坏将直接影响学生今后的简便计算和计算速度。这部分内容是在学生已经学过的加法计算和验算的基础上进一步探究,从感性上升到理性的内容。教材安排两个运算定律教学时,采用了不完全的归纳推理,教材从学生熟悉的实际问题的解答引入新课,列出两个不同的算式组成等式,再例举类似的等式进行分析、比较、找到共同点,抽象、概括出加法交换律和加法结合律。教材有意识地让学生运用已有的经验,经历运算律的发现过程,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理的构建知识。“想想做做”先安排了一些基本练习,以填空、判断等形式巩固对加法运算的理解,接着通过题组对比和凑整等练习,为学习简便计算作适当渗透和铺垫。

  (二)学情分析

  (三)目标定位

  根据学生的生活经验和知识背景及本课的知识特点,我预设如下教学目标:

  (1)教学技能目标:通过利用学生身边的材料,组成贴近学生生活的教学内容,使学生理解并掌握加法交换律和加法结合律,并能用字母来表示交换律和结合律。

  (2)过程方法目标:通过学生的自主观察、比较、分析、归纳,合作交流等学习活动,使学生经历探索加法交换律和结合律的过程,并经过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。

  (3)情感、态度、价值观目标:通过学生积极参与规律的探索,发现和归纳,使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考问题的意识和习惯。

  教学重点:使学生理解并掌握加法交换律和结合律,能用字母表示加法交换律和结合律。

  教学难点:使学生经历探索加法交换律和结合律的过程,发现并概括出运算定律。

  教具学具:为了便于操作、交流和展示、及时与学生互动,本课准备多媒体一套。

  二、说教学程序

  鉴于本课教学内容设定的目标及学生的认知规律和实际情况,预设如下四部分展开教学。

  (一)探索加法交换律:

  这部分分成4个环节进行

  1、在情境中初步感知规律

  课始从学校参加吴中区小*会话题作为课堂信息,要求学生根据提供信息提出问题,从而导入新课,进行加法交换律的研究。

  (设计意图:数学源于生活,生活处处有数学,用学生身边事情引入新知,很好地调动学生的学习积极性,在学生交流中提取有用的.信息,为下而面的探究呈现素材,同时渗透思想品德教育。)

  2、在例举中验证规律

  (1)教师组织学生观察两个式子的特点,然后自己照样子仿写等式。

  (2)运用自己字写出的等式,再次观察、比较有何相同点和不同点,从而初步感知其中的规律。

  (设计意图:教师充分让学生自主活动,规律发现的过程。一方面组织学生写出类似的等式,帮助了学生积累感性材料,另一方面丰富了学生的表象,进一步感知了加法交换律。)

  3、在反思中概括规律

  (1)自己仿写式子,独立思考或小组讨论,用自己喜欢的形式表示出来。《加法交换律和加法结合律》说课稿 相关内容:《认识垂直》教学反思四上数学人口普查教案设计(北师大版)第十单元: 第7课时 练习九小学四年数学上册《*移与*行》教案三位数除以整十数(商是二位数)《正方形和长方形的面积、周长计算》教学实录北师大版第七册数学教案第七单元:生活中的负数 温度期末复习前摸底检测查看更多>> 小学四年级数学教案

  (设计意图:通过学生独立思考,小组讨论,师生交流的多种形式,帮助学生用自己的语言来表示加法交换律,培养学生运用数学语言表述和概括的能力)

  (2)用字母来表示加法交换律

  (设计意图:学生在充分感知个性创造的基础上,构建了简单的数学模型,从用符号表示规律和用含有字母的式子表示规律,使学生体会到符号的简洁性,从而发展了学生的符号感。)

  4、练习

  (1) 填空、(2)判断、(3)验算

  (设计意图:新课刚结束就配以填空、判断、验算多种形式的联系,既有利于概念的正确建立,同时也及时地巩固了新知。)

  (二)探索加法结合律:

  整个探索过程与“交换律”相似,唯一不同的是由于学生已有了探索前面例子的经验,在这里教师可以完全放手,稍加点拨便于引导学生完成探索过程。

  1、在情境中感受规律。

  以上面4、练习题为内容,让学生提问题过渡到下一环节,非常自然,

  (1)学生一起解决“三个项目共得多少分?”

  (2)交流学生各自列式,并让学生说清列式理由。

  (3)选择两种不同列式,探索规律。

  (设计意图:抓住加法交换律和加法结合律的内在联系,利用学生已有知识经验,把加法交换律的学习,迁移类推到加法结合律的学习中来。)

  2、在计算中验证规律

  (1)教师出示两组题目,让学生观察结果是否相等,为学生接下来题目,探究打下基础。

  (2)教师写出左边算式,让学生写出右边算式(与左边相等),使学生在教师的引导下,逐步感知加法结合律。

  (3)学生依据自己经验,开始写出这一类型的等式题,让学生在实践操作与锻炼,并体会认识加法结合律。

  (设计意图:学生在教师的点拨和引导下,逐步从观察——感知——理解,充分符合学生的认知规律。

  3、揭示加法结合律

  (1)小组讨论,观察等式,左边和右边有什么变化,你发现了什么规律?

  (2)按照这种规律,你还能写出这样的算式吗?

  (3)用字母表示这样的规律。

  (设计意图:这里主要通过学生讨论、交流、汇报等环节,正直组学生一个自主的空间。由于“运算律”属于理性的总结和概括,比较抽象,学生并不容易理解和掌握,因此多引导学生独立发现,思考、解答,有利于学生概括出相应的运算律。)

  三、实践应用

  (设计意图:我准备安排基础训练和拓展训练两个练习层次,通过层层深入,帮助学生进一步掌握本课知识,形成技能,并激发他们的创新思维,让学生感受解决问题的乐趣。

  1、基础训练,分三个层次

  (1)想想做做1:运用了加法的什么定律?

  通过寓教于乐的游戏方法进行练习,女生代表加法交换律,男生代表加法结合律,让学生体会在每个等式中应用了什么运算定律。

  (2)想想做做4,每个学生选一组题独立完成,使学生通过比较,知道应用加法运算律有时可以使两个加数的尾数凑成整十数,使计算简便。

  (3)想想做做5

  (设计意图:让学生意识到结合律往往要凑整,进行这题训练有利于提高学生的计算速度和正确率。为后头运用加法运算律进行简便运算打好基础。)

  2、拓展练习,分二个层次

  (1)在方框里填上适当的数。通过用图形式字母表示数来巩固加法运算定律,有利于学生抽象思维的形成。

  (2)应用加法运算定律使计算简便:30+28+70+45+72。通过该题训练把一般的规律推广到更多的数字计算中,有利于知识的深化和综合运用知识能力的提高。

  四、评价鼓励

  (设计意图:及时评价总结,肯定学生的学习,以促进学生更加自觉主动地进行学习,使本课学习内容的理解提升到一个更高层面。)

  五、教法、学法

  以上是本人对本课教学过程的预设,在实际教学过程中将尽可能结合学生的生活经验,为学生创设生活和活动情景,新授和练习尽可能从贴近学生身边的素材撷取,激发学生学习兴趣,在学习过程中让学生经历动手实践,自主探究,合作交流的活动,使学生体会“做数学的乐趣。”

  板书设计

  (设计意图:简明扼要的、纲领式的板书反映本课主要内容,体现本课知识的形成过程,知识性、系统性在整个板书中充分体现。)

加法结合律说课稿3

  一、说教材

  1、教材分析

  “加法交换律和加法结合律”是国标版苏教版小学四年级上册第八单元中的第一课时,它是运算中进行简便计算的两种必要的理论依据,他们是学生正确、合理、灵活地进行计算的思维素质,掌握的好坏将直接影响学生今后的简便计算和计算速度。

  2、目标分析

  (1)教学技能目标:利用学生熟悉的情境引入教学内容,使学生理解并掌握加法交换律和加法结合律,并能用字母来表示交换律和结合律。

  (2)过程方法目标:通过学生的自主观察、比较、分析、归纳,合作交流等学习活动,使学生经历探索加法交换律和结合律的过程,进行比较和分析,发现并概括出运算律。

  (3)情感、态度、价值观目标:通过学生积极参与规律的探索,发现和归纳,使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考问题的意识和习惯。

  教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

  教学难点:使学生经历探索加法交换律和结合律的过程,发现并概括出运算定律。

  二、说教学过程

  (一)探索加法交换律:

  这部分分成4步进行

  1、感知规律

  课的开始出示第56页的例题(前两幅图),通过解决“参加跳绳的一共有多少人?”得出一个等式,从而导入新课,进行加法交换律的研究。

  (设计意图:用学生身边事情引入新知,并为下而面的探究呈现素材。)

  2、验证规律

  (1)组织学生观察这个等式的特点,然后自己照样子仿写等式。

  (2)运用自己写出的等式,再次观察、比较有何相同点和不同点,从而初步感知其中的规律。

  (设计意图:丰富学生的表象,进一步感知加法交换律。)

  3、概括规律

  (1)通过自己仿写式子,独立思考或小组讨论,引导学生概括出规律,尝试用语言表述。

  (2)用自己喜欢的形式表示出来着重强调用字母来表示加法交换律的简便性。

  (设计意图:帮助学生构建了简单的数学模型,使学生体会到符号的简洁性,从而发展了学生的符号感。)

  4、巩固规律

  出示一组填空,根据加法交换律填出所缺的数字

  (设计意图:一个规律教授结束就配以针对性的练习,既有利于概念的正确建立,同时也及时地巩固了新知。)

  (二)探索加法结合律:

  1、感受规律。

  在学生解决“三个项目共得多少分?”过程中得出等式。学生交流各自列式,并让学生说清列式理由。选择两种不同列式,探索规律。

  (设计意图:抓住加法交换律和加法结合律的内在联系,利用学生已有知识经验,把加法交换律的学习,迁移类推到加法结合律的学习中来。)

  2、验证规律

  (1)教师出示两组题目,判断左右两边是否可以写等号,分别算一算。

  (2)学生依据自己经验,开始写出这一类型的等式题,让学生在实践操作与锻炼,并体会认识加法结合律。

  3、揭示规律

  (1)小组讨论,观察等式,左边和右边有什么变化,你发现了什么规律?

  (2)按照这种规律,你还能写出这样的算式吗?

  (3)用字母表示这样的规律。

  (设计意图:多引导学生独立发现,思考、解答,有利于学生概括出相应的运算律。)

  4、巩固规律。出示针对结合律的一些填空,巩固新知。

  三、实践应用

  1、书面训练

  (1)想想做做4,每个学生选一组题独立完成,使学生通过比较,知道应用加法运算律有时可以使两个加数的尾数凑成整十数,使计算简便。

  (2)想想做做5

  (设计意图:让学生意识到结合律往往要凑整,进行这题训练有利于提高学生的计算速度和正确率。为后头运用加法运算律进行简便运算打好基础。)

  2、活动训练。游戏“找朋友”

  (1)如:师说出“2”,学生要找出它的好朋友“8”,因为“2”和“8”和是“10”,教师配合学生完成。

  (2)找出与一个数和是100的数。同学配合完成。

  (设计意图:让学生在游戏中意识到结合律往往要凑整,进行这题训练有利于提高学生的计算速度和正确率。)

推荐访问:加法 教学设计 交换 《加法交换律和结合律》教学设计 菁选五篇 《加法交换律和结合律》教学设计1 加法交换律和结合律教学设计人教版

版权所有:袖书文档网 2002-2024 未经授权禁止复制或建立镜像[袖书文档网]所有资源完全免费共享

Powered by 袖书文档网 © All Rights Reserved.。备案号:鲁ICP备20026461号-1