当前位置:首页 > 专题范文 > 公文范文 > 2023年度《数学列方程解应用题》小学数学说课稿3篇

2023年度《数学列方程解应用题》小学数学说课稿3篇

发布时间:2023-03-02 13:00:06 来源:网友投稿

《数学列方程解应用题》小学数学说课稿1  一、说教材  1、教学内容:  列方程解应用题是选自苏教版小学数学教材第九册第八单元。列方程解应用题是以学生初步掌握的列方程解应用题的一般步骤和基本方法以及下面是小编为大家整理的2023年度《数学列方程解应用题》小学数学说课稿3篇,供大家参考。

2023年度《数学列方程解应用题》小学数学说课稿3篇

《数学列方程解应用题》小学数学说课稿1

  一、说教材

  1、教学内容:

  列方程解应用题是选自苏教版小学数学教材第九册第八单元。列方程解应用题是以学生初步掌握的列方程解应用题的一般步骤和基本方法以及前阶段学习的简易方程为基础,教材引导学生通过想数量关系来列方程解应用题。这种题型的题目用方程来解,思路较简单,有利于减轻学生负担,同时也为后面学习较复杂的应用题奠定了基础。

  2、教学目标:

  知识目标:学生学会列方程解答数量关系稍复杂的要求两个未知数的(和倍、差倍)应用题。通过分析已知条件,学会设1倍为X,另一个数为几X。

  能力目标:进一步掌握列方程解应用题的步骤和思路,提高列方程解应用题的能力。并初步学会用检验答案是否符合已知条件来检验方程的解应用题的能力。

  情感目标:感受数学与生活的联系,提高解决问题的能力。

  二、说教学、学法

  1、创设生活情境,把问题权还给学生

  《数学课程标准》提出:“数学教学应该是从学生的生活经验和已有知识背景出发,向他们提供充分从事数学活动和交流的机会。”使学生意识到抽象的数学知识可以在现实生活中找到活生生的原型,“现实生活中蕴含着大量的数学信息”。从中感受生活处处有数学,数学处处皆生活的思想。数学是从生活中来,后运用到生活中。

  2、迁移原知,为自主探究奠定基础

  新课程理念表明:数学教学的价值并非单纯地通过积累数学事实来实现,它更多通过对重要的数学思想方法的领悟,对数学活动经验的条理化,对数学知识的自我组织等活动来实现,学生的数学学习,基本是一种符号化语言,与生活实际的相互融化与转化,并主动建构的过程。本课准备阶段的练习题中,不论是数量关系和解题的方法对学习例3都具有迁移的作用,学生已具备了一定的能力,因此利用这一原理可直接让学生进行探究性学习。把发现知识内在联系的机会与权利还给学生。

  3、重视指导,为新知建构提供条件

  《课标》提出:“数学是人们对实现世界定性把握和定量刻画,逐渐抽象概括,形成方法和理论,并进行广泛应用的过程。”数学学习中的这一形成过程,需要老师的“授之以渔”。为了使学生通过解决具体问题后抽象概括出普遍方法,指导他们观察分析这类题目的结构,进一步理解列方程解答含有两个未知数的应用题的一般解题步骤。正如皮亚杰的认识论认为:学生学习新知识的过程,就是用原有知识和经验对新知识进行同化与顺应的过程,即对新知信息进行提取、加工、理解、重组、吸收内化的过程。这一过程应有老师的组织、参与和指导,有同伴的合作、交流与探索,有主体主动参与经历知识的发生、发展,体验新知的建构、应用,方能有效实现。这也是我这堂课很失败的一个地方,没有能够起到一个很好的指导作用,一定要作好及时的小结。

  三、说教学过程

  第一阶段,复习旧知,建构与新知的联系

  图及抽象的文字让学生通过谁是一份数,谁是几份数感性的认识了设谁为X,那么另一个就是几X,那么他们的和是几X,差又是几X。

  第二阶段是通过情境的创设

  由学生从生活中提出问题,然后自己解答的形式展开。教学解答应用题的思路和方法,是教学的重点,也是难点。采用了先让学生尝试解答后分析、归纳、概括的方法。主要强调:一是设谁为X?也就是找关键句确定单位“1”。二是找等量关系,即列方程的依据。然后列方程解答,同时还要告诉学生解题是要养成自觉检验的习惯。渗透学习目的性教学。 然后一个环节是检验。虽不要求写在本子上或卷子上,但这是不可忽视的重要步骤,长期要求下去,就可使学生养成良好的检验习惯,增强责任心和自信心,那种做完题不知对错的做法是后患无穷的。

  第三阶段是

  改编例题,这个问题应该是在分析、归纳、概括的基础上进行的,通过学生对例1的理解,对例1的升华,引导学生发现这两道题之间的相同和不同点,让学生先找找数量关系,然后根据数量关系解题。

  第四阶段是巩固练习,通过有针对性的练习,使学生掌握解题思路,理清解题方法。在这中间安排了生活中的一些数学问题,使学生体会到数学与生活的联系。

《数学列方程解应用题》小学数学说课稿2

  这节课的教学内容是九年义务教育六年制小学教科书数学第九册,P117——P119页复习、例1、例2、解方程的一般步骤、想一想、做一做及P120页T1-4。教学目的有以下三点:1、使学生掌握列方程解两步应用题的方法。2、总结列方程解应用题的一般步骤。3、培养学生分析数量关系的能力,提高学生在列方程解应用题时分析等理关系的能力。

  一、教学重点难点:分析应用题里的等量关系,会列方程解应用题。难点:分析应用题里的等量关系。教具准备:小黑板、写好题目的纸条等。这节课在学生已有的解方程、分析应用题数量关系等知识的基础上进行教学,使学生掌握列方程解应用题的方法,为以后学习更深入的知识打下基础,同时培养学生积极思考问题,热爱自然科学的品质。

  二、教学教法:针对本课的知识特点,采用了下面几种方法进行教学:讲授法、对比法、分组讨论法。在准备阶段,让学生独立完成习题,学生根据以前的知识可以用算术方法和列方程的方法来解答此题,从而为今天学习较复杂的列方程解应用题打下基础。在新课阶段,应用讲授法和对比法,让学生观察、比较例1和准备题的内在联系,找出数量间的相等关系,列出等量关系式,再根据等量关系式列出方程,从而掌握本课的知识重点,同时也能理解掌握本课的难点。在小结阶段,采用分组讨论法,让学生通过分组讨论得出列方程解应用题的一般步骤,完成这一课的教学任务。在练习阶段,教师灵活采用各种教学方法和手段进行巩固练习。

  三、教学步骤:在教学步骤上,我是这样进行教学的:

  一、准备。

  教师出示复习题,学生读题后说:“请同学们用两种方法解答这道题。”

  商店原来有一些饺子粉,卖出35千克以后,还剩40千克。这个商店原来有多少千克饺子粉?

  解法一:35+40=75(千克)

  解法二:设原来有X千克,

  X-35=40

  X=40+35

  X=75

  答:原来有75千克饺子粉。

  二、新课。

  教师出示例1:

  请学生思考:这道题和上道题有什么相同点和不同点?

  商店原来有一些饺子粉,每袋5千克,卖出7袋以后,还剩40千克。这个商店原来有多少千克饺子粉?

  想:原有的重量-每袋的重量X卖出的袋数=剩下的重量

  X千克5千克7袋40千克

  解:设原有X千克。

  X-5X7=40

  X-35=40

  X=40+35

  X=75

  答:原来有75千克饺子粉。

  教师:“用方程解答应用题也要检查答案对不对。检验时,要先检查方程是不是符合题意,然后再把解得的X的值代入原方程,看解得对不对。请你用上面的方法检验例1的答案对不对。”

  教师出示例2:

  小青买4节五号电池,付出8.5元,找回了0.1元。每节五号电池的价钱是多少元?

  想:付出的钱数-4节电池的钱数=找回的钱数

  8.5元4X0.1

  解:设每节五号电池的价钱是X元。

  8.5-4X=0.1

  4X=8.5-0.1

  4X=8.4

  X=8.44

  X=2.1

  答:每节五号电池的价钱是2.1元。

  想一想:这道题还可以怎样想?列出方程来。

  教师:从上面的例题可以看出,列方程解应用题的特点是,用字母表示未知数,根据题目中数量之间的"相等关系,列出一个含有未知数的等式(也就是方程),再解答出来。

  三、小结。

  教师:大家分组来总结列出方程解应用题的一般步骤。

  1、弄清题意,找出未知数,并用X表示;

  2、找出应用题中数量之间的相等关系,列方程;

  3、解方程;

  4、检验,再写出答案。

  把例1中的前两个条件改写成“商店原来有15袋饺子粉,卖出35千克以后”,问题改成“每袋饺子粉重多少千克”,该怎样解?

  四、练习:

  1、下面两题,先找数量间的相等关系,再把每个方程补充完整。

  (1)小明买4支铅笔,每支X元,付给营业员3.5元,找回0.1元。

  —————————————=0.1

  (2)建筑工地运来5车水泥,每车X吨,用去13吨以后还剩7吨。

  —————————————=7

  2、图书小组原来有一些故事书,借给3个班,每班18本,还剩35本。原来有故事书多少本?

  五、布置作业(略)


《数学列方程解应用题》小学数学说课稿3篇扩展阅读


《数学列方程解应用题》小学数学说课稿3篇(扩展1)

——《列方程解应用题》教案3篇

《列方程解应用题》教案1

  教学目标:

  1、能够找出数量间的等量关系,列出方程;

  2、根据等式的性质,解方程。

  教学过程:

  一、等量关系

  用含字母的式子表示出题中的数量关系;

  找出数量间的等量关系,再列方程。

  单价×( )=总价工作时间=( )÷( )

  ( )×时间=路程( )×数量=总产量

  三角形面积=( )×( )÷2长方形面积=( )×( )

  正方形周长÷( )=边长(上底+下底)×( )÷( )=梯形面积

  长方形周长=(+)×2*行四边形面积=( )×( )

  二、列方程解应用题

  列方程解应用题的一般步骤是

  (1)弄清题意,找出( ),并用( )表示;

  (2)找出应用题中( )的相等关系,列方程;

  (3)( );

  (4)检验,写出( )。

  常用关系:付出的钱数—( )=找回的钱数

  已修的米数+( )=总共要修的米数

  总路程—( )=剩下的路程

  三、归纳总结,布置作业

《列方程解应用题》教案2

  教学目标

  1。使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;

  2。通过列分式方程解应用题,渗透方程的思想方法。

  教学重点和难点

  重点:列分式方程解应用题。

  难点:根据题意,找出等量关系,正确列出方程。

  教学过程设计

  一、复习

  例 解方程:

  (1)2x+xx+3=1; (2)15x=2×15 x+12;

  (3)2(1x+1x+3)+x-2x+3=1。

  解 (1)方程两边都乘以x(3+3),去分母,得

  2(x+3)+x2=x2+3x,即2x-3x=-6

  所以 x=6。

  检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

  (2)方程两边都乘以x(x+12),约去分母,得

  15(x+12)=30x。

  解这个整式方程,得

  x=12。

  检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。

  (3)整理,得

  2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,

  即 2x+xx+3=1。

  方程两边都乘以x(x+3),去分母,得

  2(x+3)+x2=x(x+3),

  即 2x+6+x2=x2+3x,

  亦即 2x-3x=-6。

  解这个整式方程,得 x=6。

  检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

  二、新课

  例1 一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍。若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?

  请同学根据题意,找出题目中的等量关系。

  答:骑车行进路程=队伍行进路程=15(千米);

  骑车的速度=步行速度的2倍;

  骑车所用的时间=步行的时间-0。5小时。

  请同学依据上述等量关系列出方程。

  答案:

  方法1 设这名学生骑车追上队伍需x小时,依题意列方程为

  15x=2×15 x+12。

  方法2 设步行速度为x千米/时,骑车速度为2x千米/时,依题意列方程为

  15x-15 2x=12。

  解 由方法1所列出的方程,已在复习中解出,下面解由方法2所列出的方程。

  方程两边都乘以2x,去分母,得

  30-15=x,

  所以 x=15。

  检验:当x=15时,2x=2×15≠0,所以x=15是原分式方程的根,并且符合题意。

  所以骑车追上队伍所用的时间为15千米 30千米/时=12小时。

  答:骑车追上队伍所用的时间为30分钟。

  指出:在例1中我们运用了两个关系式,即时间=距离速度,速度=距离 时间。

  如果设速度为未知量,那么按时间找等量关系列方程;如果设时间为未知量,那么按

  速度找等量关系列方程,所列出的方程都是分式方程。

  例2 某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成。现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?

  分析;这是一个工程问题,在工程问题中有三个量,工作量设为s,工作所用时间设为t,工作效率设为m,三个量之间的关系是

  s=mt,或t=sm,或m=st。

  请同学根据题中的等量关系列出方程。

  答案:

  方法1 工程规定日期就是甲单独完成工程所需天数,设为x天,那么乙单独完成工程所需的天数就是(x+3)天,设工程总量为1,甲的工作效率就是x1,乙的工作效率是1x+3。依题意,列方程为

  2(1x+1x3)+x2-xx+3=1。

  指出:工作效率的意义是单位时间完成的.工作量。

  方法2 设规定日期为x天,乙与甲合作两天后,剩下的工程由乙单独做,恰好在规定日期完成,因此乙的工作时间就是x天,根据题意列方程

  2x+xx+3=1。

  方法3 根据等量关系,总工作量—甲的工作量=乙的工作量,设规定日期为x天,则可列方程

  1-2x=2x+3+x-2x+3。

  用方法1~方法3所列出的方程,我们已在新课之前解出,这里就不再解分式方程了。重点是找等量关系列方程。

  三、课堂练习

  1。甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个零件,求两人每小时各加工的零件个数。

  2。A,B两地相距135千米,有大,小两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟。已知大、小汽车速度的比为2:5,求两辆汽车的速度。

  答案:

  1。甲每小时加工15个零件,乙每小时加工20个零件。

  2。大,小汽车的速度分别为18千米/时和45千米/时。

  四、小结

  1。列分式方程解应用题与列一元一次方程解应用题的方法与步骤基本相同,不同点是,解分式方程必须要验根。一方面要看原方程是否有增根,另一方面还要看解出的根是否符合题意。原方程的增根和不符合题意的根都应舍去。

  2。列分式方程解应用题,一般是求什么量,就设所求的量为未知数,这种设未知数的方法,叫做设直接未知数。但有时可根据题目特点不直接设题目所求的量为未知量,而是设另外的量为未知量,这种设未知数的方法叫做设间接未知数。在列分式方程解应用题时,设间接未知数,有时可使解答变得简捷。例如在课堂练习中的第2题,若题目的条件不变,把问题改为求大、小两辆汽车从A地到达B地各用的时间,如果设直接未知数,即设,小汽车从A地到B地需用时间为x小时,则大汽车从A地到B地需(x+5-12)小时,依题意,列方程

  135 x+5-12:135x=2:5。

  解这个分式方程,运算较繁琐。如果设间接未知数,即设速度为未知数,先求出大、小两辆汽车的速度,再分别求出它们从A地到B地的时间,运算就简便多了。

  五、作业

  1 填空:

  (1)一件工作甲单独做要m小时完成,乙单独做要n小时完成,如果两人合做,完成这件工作的时间是______小时;

  (2)某食堂有米m公斤,原计划每天用粮a公斤,现在每天节约用粮b公斤,则可以比原计划多用天数是______;

  (3)把a千克的盐溶在b千克的水中,那么在m千克这种盐水中的含盐量为______千克。

  2 列方程解应用题。

  (1)某工人师傅先后两次加工零件各1500个,当第二次加工时,他革新了工具,改进了操作方法,结果比第一次少用了18个小时。已知他第二次加工效率是第一次的2。5倍,求他第二次加工时每小时加工多少零件?

  (2)某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用的时间相等,求他步行40千米用多少小时?

  (3)已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?

  (4)A,B两地相距135千米,两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟。已知两车的速度之比是5:2,求两辆汽车各自的速度。

  答案:

  1 (1)mn m+n; (2)m a-b-ma; (3)ma a+b。

  2 (1)第二次加工时,每小时加工125个零件。

  (2)步行40千米所用的时间为40 4=10(时)。答步行40千米用了10小时。

  (3)江水的流速为4千米/时。

  课堂教学设计说明

  1。教学设计中,对于例

  1,引导学生依据题意,找到三个等量关系,并用两种不同的方法列出方程;对于例

  2,引导学生依据题意,用三种不同的方法列出方程。这种安排,意在启发学生能善于从不同的角度、不同的方向思考问题,激励学生在解决问题中养成灵活的思维习惯。这就为在列分式方程解应用题教学中培养学生的发散思维提供了广阔的空间。

  2。教学设计中体现了充分发挥例题的模式作用。

  例1是行程问题,其中距离是已知量,求速度(或时间);例2是工程问题,其中工作总量为已知量,求完成工作量的时间(或工作效率)。这些都是运用列分式方程求解的典型问题。教学中引导学生深入分析已知量与未知量和题目中的等量关系,以及列方程求解的思路,以促使学生加深对模式的主要特征的理解和识另?别,让学生弄清哪些类型的问题可借助于分式方程解答,求解的思路是什么。学生完成课堂练习和作业,则是识别问题类型,能把面对的问题和已掌握的模式在头脑中建立联系,探求解题思路。

  3。通过列分式方程解应用题数学,渗透了方程的思想方法,从中使学生认识到方程的思想方法是数学中解决问题的一个锐利武器。方程的思想方法可以用“以假当真”和“弄假成真”两句话形容。如何通过设直接未知数或间接未知数的方法,假设所求的量为x,这时就把它作为一个实实在在的量。通过找等量关系列方程,此时是把已知量与假设的未知量*等看待,这就是“以假当真”。通过解方程求得问题的解,原先假设的未知量x就变成了确定的量,这就是“弄假成真”。

  列分式方程解应用题

  教学目标

  1。使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;

  2。通过列分式方程解应用题,渗透方程的思想方法。

  教学重点和难点

  重点:列分式方程解应用题。

  难点:根据题意,找出等量关系,正确列出方程。

  教学过程设计

  一、复习

  例 解方程:

  (1)2x+xx+3=1; (2)15x=2×15 x+12;

  (3)2(1x+1x+3)+x-2x+3=1。

  解 (1)方程两边都乘以x(3+3),去分母,得

  2(x+3)+x2=x2+3x,即2x-3x=-6

  所以 x=6。

  检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

  (2)方程两边都乘以x(x+12),约去分母,得

  15(x+12)=30x。

  解这个整式方程,得

  x=12。

  检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。

  (3)整理,得

  2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,

  即 2x+xx+3=1。

  方程两边都乘以x(x+3),去分母,得

  2(x+3)+x2=x(x+3),

  即 2x+6+x2=x2+3x,

  亦即 2x-3x=-6。

  解这个整式方程,得 x=6。

  检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

  二、新课

  例1 一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍。若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?

  请同学根据题意,找出题目中的等量关系。

  答:骑车行进路程=队伍行进路程=15(千米);

  骑车的速度=步行速度的2倍;

  骑车所用的时间=步行的时间-0。5小时。

  请同学依据上述等量关系列出方程。

  答案:

  方法1 设这名学生骑车追上队伍需x小时,依题意列方程为

  15x=2×15 x+12。

  方法2 设步行速度为x千米/时,骑车速度为2x千米/时,依题意列方程为

  15x-15 2x=12。

  解 由方法1所列出的方程,已在复习中解出,下面解由方法2所列出的方程。

  方程两边都乘以2x,去分母,得

  30-15=x,

  所以 x=15。

  检验:当x=15时,2x=2×15≠0,所以x=15是原分式方程的根,并且符合题意。

  所以骑车追上队伍所用的时间为15千米 30千米/时=12小时。

  答:骑车追上队伍所用的时间为30分钟。

  指出:在例1中我们运用了两个关系式,即时间=距离速度,速度=距离 时间。

  如果设速度为未知量,那么按时间找等量关系列方程;如果设时间为未知量,那么按

  速度找等量关系列方程,所列出的方程都是分式方程。

  例2 某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成。现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?

  分析;这是一个工程问题,在工程问题中有三个量,工作量设为s,工作所用时间设为t,工作效率设为m,三个量之间的关系是

  s=mt,或t=sm,或m=st。

  请同学根据题中的等量关系列出方程。

  答案:

  方法1 工程规定日期就是甲单独完成工程所需天数,设为x天,那么乙单独完成工程所需的天数就是(x+3)天,设工程总量为1,甲的工作效率就是x1,乙的工作效率是1x+3。依题意,列方程为

  2(1x+1x3)+x2-xx+3=1。

  指出:工作效率的意义是单位时间完成的工作量。

  方法2 设规定日期为x天,乙与甲合作两天后,剩下的工程由乙单独做,恰好在规定日期完成,因此乙的工作时间就是x天,根据题意列方程

  2x+xx+3=1。

  方法3 根据等量关系,总工作量—甲的工作量=乙的工作量,设规定日期为x天,则可列方程

  1-2x=2x+3+x-2x+3。

  用方法1~方法3所列出的方程,我们已在新课之前解出,这里就不再解分式方程了。重点是找等量关系列方程。

  三、课堂练习

  1。甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个零件,求两人每小时各加工的零件个数。

  2。A,B两地相距135千米,有大,小两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟。已知大、小汽车速度的比为2:5,求两辆汽车的速度。

  答案:

  1。甲每小时加工15个零件,乙每小时加工20个零件。

  2。大,小汽车的速度分别为18千米/时和45千米/时。

  四、小结

  1。列分式方程解应用题与列一元一次方程解应用题的方法与步骤基本相同,不同点是,解分式方程必须要验根。一方面要看原方程是否有增根,另一方面还要看解出的根是否符合题意。原方程的增根和不符合题意的根都应舍去。

  2。列分式方程解应用题,一般是求什么量,就设所求的量为未知数,这种设未知数的方法,叫做设直接未知数。但有时可根据题目特点不直接设题目所求的量为未知量,而是设另外的量为未知量,这种设未知数的方法叫做设间接未知数。在列分式方程解应用题时,设间接未知数,有时可使解答变得简捷。例如在课堂练习中的第2题,若题目的条件不变,把问题改为求大、小两辆汽车从A地到达B地各用的时间,如果设直接未知数,即设,小汽车从A地到B地需用时间为x小时,则大汽车从A地到B地需(x+5-12)小时,依题意,列方程

  135 x+5-12:135x=2:5。

  解这个分式方程,运算较繁琐。如果设间接未知数,即设速度为未知数,先求出大、小两辆汽车的速度,再分别求出它们从A地到B地的时间,运算就简便多了。

  五、作业

  1。填空:

  (1)一件工作甲单独做要m小时完成,乙单独做要n小时完成,如果两人合做,完成这件工作的时间是______小时;

  (2)某食堂有米m公斤,原计划每天用粮a公斤,现在每天节约用粮b公斤,则可以比原计划多用天数是______;

  (3)把a千克的盐溶在b千克的水中,那么在m千克这种盐水中的含盐量为______千克。

  2。列方程解应用题。

  (1)某工人师傅先后两次加工零件各1500个,当第二次加工时,他革新了工具,改进了操作方法,结果比第一次少用了18个小时。已知他第二次加工效率是第一次的2。5倍,求他第二次加工时每小时加工多少零件?

  (2)某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用的时间相等,求他步行40千米用多少小时?

  (3)已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?

  (4)A,B两地相距135千米,两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟。已知两车的速度之比是5:2,求两辆汽车各自的速度。

  答案:

  1。(1)mn m+n; (2)m a-b-ma; (3)ma a+b。

  2。(1)第二次加工时,每小时加工125个零件。

  (2)步行40千米所用的时间为40 4=10(时)。答步行40千米用了10小时。

  (3)江水的流速为4千米/时。

  课堂教学设计说明

  1 教学设计中,对于例1,引导学生依据题意,找到三个等量关系,并用两种不同的方法列出方程;对于例2,引导学生依据题意,用三种不同的方法列出方程。这种安排,意在启发学生能善于从不同的角度、不同的方向思考问题,激励学生在解决问题中养成灵活的思维习惯。这就为在列分式方程解应用题教学中培养学生的发散思维提供了广阔的空间。

  2 教学设计中体现了充分发挥例题的模式作用。例1是行程问题,其中距离是已知量,求速度(或时间);例2是工程问题,其中工作总量为已知量,求完成工作量的时间(或工作效率)。这些都是运用列分式方程求解的典型问题。教学中引导学生深入分析已知量与未知量和题目中的等量关系,以及列方程求解的思路,以促使学生加深对模式的主要特征的理解和识另?别,让学生弄清哪些类型的问题可借助于分式方程解答,求解的思路是什么。学生完成课堂练习和作业,则是识别问题类型,能把面对的问题和已掌握的模式在头脑中建立联系,探求解题思路。

  3 通过列分式方程解应用题数学,渗透了方程的思想方法,从中使学生认识到方程的思想方法是数学中解决问题的一个锐利武器。方程的思想方法可以用“以假当真”和“弄假成真”两句话形容。如何通过设直接未知数或间接未知数的方法,假设所求的量为x,这时就把它作为一个实实在在的量。通过找等量关系列方程,此时是把已知量与假设的未知量*等看待,这就是“以假当真”。通过解方程求得问题的解,原先假设的未知量x就变成了确定的量,这就是“弄假成真”。

《列方程解应用题》教案3

  教学目标

  1。使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;

  2。通过列分式方程解应用题,渗透方程的思想方法。

  教学重点和难点

  重点:列分式方程解应用题。

  难点:根据题意,找出等量关系,正确列出方程。

  教学过程设计

  一、复习

  例 解方程:

  (1)2x+xx+3=1; (2)15x=2×15 x+12;

  (3)2(1x+1x+3)+x-2x+3=1。

  解 (1)方程两边都乘以x(3+3),去分母,得

  2(x+3)+x2=x2+3x,即2x-3x=-6

  所以 x=6。

  检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

  (2)方程两边都乘以x(x+12),约去分母,得

  15(x+12)=30x。

  解这个整式方程,得

  x=12。

  检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。

  (3)整理,得

  2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,

  即 2x+xx+3=1。

  方程两边都乘以x(x+3),去分母,得

  2(x+3)+x2=x(x+3),

  即 2x+6+x2=x2+3x,

  亦即 2x-3x=-6。

  解这个整式方程,得 x=6。

  检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

  二、新课

  例1 一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍。若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?

  请同学根据题意,找出题目中的等量关系。

  答:骑车行进路程=队伍行进路程=15(千米);

  骑车的速度=步行速度的2倍;

  骑车所用的时间=步行的时间-0。5小时。

  请同学依据上述等量关系列出方程。

  答案:

  方法1 设这名学生骑车追上队伍需x小时,依题意列方程为

  15x=2×15 x+12。

  方法2 设步行速度为x千米/时,骑车速度为2x千米/时,依题意列方程为

  15x-15 2x=12。

  解 由方法1所列出的方程,已在复习中解出,下面解由方法2所列出的方程。

  方程两边都乘以2x,去分母,得

  30-15=x,

  所以 x=15。

  检验:当x=15时,2x=2×15≠0,所以x=15是原分式方程的根,并且符合题意。

  所以骑车追上队伍所用的时间为15千米 30千米/时=12小时。

  答:骑车追上队伍所用的时间为30分钟。

  指出:在例1中我们运用了两个关系式,即时间=距离速度,速度=距离 时间。

  如果设速度为未知量,那么按时间找等量关系列方程;如果设时间为未知量,那么按

  速度找等量关系列方程,所列出的方程都是分式方程。

  例2 某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成。现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?

  分析;这是一个工程问题,在工程问题中有三个量,工作量设为s,工作所用时间设为t,工作效率设为m,三个量之间的关系是

  s=mt,或t=sm,或m=st。

  请同学根据题中的等量关系列出方程。

  答案:

  方法1 工程规定日期就是甲单独完成工程所需天数,设为x天,那么乙单独完成工程所需的天数就是(x+3)天,设工程总量为1,甲的工作效率就是x1,乙的工作效率是1x+3。依题意,列方程为

  2(1x+1x3)+x2-xx+3=1。

  指出:工作效率的意义是单位时间完成的工作量。

  方法2 设规定日期为x天,乙与甲合作两天后,剩下的工程由乙单独做,恰好在规定日期完成,因此乙的工作时间就是x天,根据题意列方程

  2x+xx+3=1。

  方法3 根据等量关系,总工作量—甲的工作量=乙的工作量,设规定日期为x天,则可列方程

  1-2x=2x+3+x-2x+3。

  用方法1~方法3所列出的方程,我们已在新课之前解出,这里就不再解分式方程了。重点是找等量关系列方程。

  三、课堂练习

  1。甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个零件,求两人每小时各加工的.零件个数。

  2。A,B两地相距135千米,有大,小两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟。已知大、小汽车速度的比为2:5,求两辆汽车的速度。

  答案:

  1。甲每小时加工15个零件,乙每小时加工20个零件。

  2。大,小汽车的速度分别为18千米/时和45千米/时。

  四、小结

  1。列分式方程解应用题与列一元一次方程解应用题的方法与步骤基本相同,不同点是,解分式方程必须要验根。一方面要看原方程是否有增根,另一方面还要看解出的根是否符合题意。原方程的增根和不符合题意的根都应舍去。

  2。列分式方程解应用题,一般是求什么量,就设所求的量为未知数,这种设未知数的方法,叫做设直接未知数。但有时可根据题目特点不直接设题目所求的量为未知量,而是设另外的量为未知量,这种设未知数的方法叫做设间接未知数。在列分式方程解应用题时,设间接未知数,有时可使解答变得简捷。例如在课堂练习中的第2题,若题目的条件不变,把问题改为求大、小两辆汽车从A地到达B地各用的时间,如果设直接未知数,即设,小汽车从A地到B地需用时间为x小时,则大汽车从A地到B地需(x+5-12)小时,依题意,列方程

  135 x+5-12:135x=2:5。

  解这个分式方程,运算较繁琐。如果设间接未知数,即设速度为未知数,先求出大、小两辆汽车的速度,再分别求出它们从A地到B地的时间,运算就简便多了。

  五、作业

  1 填空:

  (1)一件工作甲单独做要m小时完成,乙单独做要n小时完成,如果两人合做,完成这件工作的时间是______小时;

  (2)某食堂有米m公斤,原计划每天用粮a公斤,现在每天节约用粮b公斤,则可以比原计划多用天数是______;

  (3)把a千克的盐溶在b千克的水中,那么在m千克这种盐水中的含盐量为______千克。

  2 列方程解应用题。

  (1)某工人师傅先后两次加工零件各1500个,当第二次加工时,他革新了工具,改进了操作方法,结果比第一次少用了18个小时。已知他第二次加工效率是第一次的2。5倍,求他第二次加工时每小时加工多少零件?

  (2)某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用的时间相等,求他步行40千米用多少小时?

  (3)已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?

  (4)A,B两地相距135千米,两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟。已知两车的速度之比是5:2,求两辆汽车各自的速度。

  答案:

  1 (1)mn m+n; (2)m a-b-ma; (3)ma a+b。

  2 (1)第二次加工时,每小时加工125个零件。

  (2)步行40千米所用的时间为40 4=10(时)。答步行40千米用了10小时。

  (3)江水的流速为4千米/时。

  课堂教学设计说明

  1。教学设计中,对于例

  1,引导学生依据题意,找到三个等量关系,并用两种不同的方法列出方程;对于例

  2,引导学生依据题意,用三种不同的方法列出方程。这种安排,意在启发学生能善于从不同的角度、不同的方向思考问题,激励学生在解决问题中养成灵活的思维习惯。这就为在列分式方程解应用题教学中培养学生的发散思维提供了广阔的空间。

  2。教学设计中体现了充分发挥例题的模式作用。

  例1是行程问题,其中距离是已知量,求速度(或时间);例2是工程问题,其中工作总量为已知量,求完成工作量的时间(或工作效率)。这些都是运用列分式方程求解的典型问题。教学中引导学生深入分析已知量与未知量和题目中的等量关系,以及列方程求解的思路,以促使学生加深对模式的主要特征的理解和识另?别,让学生弄清哪些类型的问题可借助于分式方程解答,求解的思路是什么。学生完成课堂练习和作业,则是识别问题类型,能把面对的问题和已掌握的模式在头脑中建立联系,探求解题思路。

  3。通过列分式方程解应用题数学,渗透了方程的思想方法,从中使学生认识到方程的思想方法是数学中解决问题的一个锐利武器。方程的思想方法可以用“以假当真”和“弄假成真”两句话形容。如何通过设直接未知数或间接未知数的方法,假设所求的量为x,这时就把它作为一个实实在在的量。通过找等量关系列方程,此时是把已知量与假设的未知量*等看待,这就是“以假当真”。通过解方程求得问题的解,原先假设的未知量x就变成了确定的量,这就是“弄假成真”。

  列分式方程解应用题

  教学目标

  1。使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;

  2。通过列分式方程解应用题,渗透方程的思想方法。

  教学重点和难点

  重点:列分式方程解应用题。

  难点:根据题意,找出等量关系,正确列出方程。

  教学过程设计

  一、复习

  例 解方程:

  (1)2x+xx+3=1; (2)15x=2×15 x+12;

  (3)2(1x+1x+3)+x-2x+3=1。

  解 (1)方程两边都乘以x(3+3),去分母,得

  2(x+3)+x2=x2+3x,即2x-3x=-6

  所以 x=6。

  检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

  (2)方程两边都乘以x(x+12),约去分母,得

  15(x+12)=30x。

  解这个整式方程,得

  x=12。

  检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。

  (3)整理,得

  2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,

  即 2x+xx+3=1。

  方程两边都乘以x(x+3),去分母,得

  2(x+3)+x2=x(x+3),

  即 2x+6+x2=x2+3x,

  亦即 2x-3x=-6。

  解这个整式方程,得 x=6。

  检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

  二、新课

  例1 一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍。若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?

  请同学根据题意,找出题目中的等量关系。

  答:骑车行进路程=队伍行进路程=15(千米);

  骑车的速度=步行速度的2倍;

  骑车所用的时间=步行的时间-0。5小时。

  请同学依据上述等量关系列出方程。

  答案:

  方法1 设这名学生骑车追上队伍需x小时,依题意列方程为

  15x=2×15 x+12。

  方法2 设步行速度为x千米/时,骑车速度为2x千米/时,依题意列方程为

  15x-15 2x=12。

  解 由方法1所列出的方程,已在复习中解出,下面解由方法2所列出的方程。

  方程两边都乘以2x,去分母,得

  30-15=x,

  所以 x=15。

  检验:当x=15时,2x=2×15≠0,所以x=15是原分式方程的根,并且符合题意。

  所以骑车追上队伍所用的时间为15千米 30千米/时=12小时。

  答:骑车追上队伍所用的时间为30分钟。

  指出:在例1中我们运用了两个关系式,即时间=距离速度,速度=距离 时间。

  如果设速度为未知量,那么按时间找等量关系列方程;如果设时间为未知量,那么按

  速度找等量关系列方程,所列出的方程都是分式方程。

  例2 某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成。现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?

  分析;这是一个工程问题,在工程问题中有三个量,工作量设为s,工作所用时间设为t,工作效率设为m,三个量之间的关系是

  s=mt,或t=sm,或m=st。

  请同学根据题中的等量关系列出方程。

  答案:

  方法1 工程规定日期就是甲单独完成工程所需天数,设为x天,那么乙单独完成工程所需的天数就是(x+3)天,设工程总量为1,甲的工作效率就是x1,乙的工作效率是1x+3。依题意,列方程为

  2(1x+1x3)+x2-xx+3=1。

  指出:工作效率的意义是单位时间完成的工作量。

  方法2 设规定日期为x天,乙与甲合作两天后,剩下的工程由乙单独做,恰好在规定日期完成,因此乙的工作时间就是x天,根据题意列方程

  2x+xx+3=1。

  方法3 根据等量关系,总工作量—甲的工作量=乙的工作量,设规定日期为x天,则可列方程

  1-2x=2x+3+x-2x+3。

  用方法1~方法3所列出的方程,我们已在新课之前解出,这里就不再解分式方程了。重点是找等量关系列方程。

  三、课堂练习

  1。甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个零件,求两人每小时各加工的零件个数。

  2。A,B两地相距135千米,有大,小两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟。已知大、小汽车速度的比为2:5,求两辆汽车的速度。

  答案:

  1。甲每小时加工15个零件,乙每小时加工20个零件。

  2。大,小汽车的速度分别为18千米/时和45千米/时。

  四、小结

  1。列分式方程解应用题与列一元一次方程解应用题的方法与步骤基本相同,不同点是,解分式方程必须要验根。一方面要看原方程是否有增根,另一方面还要看解出的根是否符合题意。原方程的增根和不符合题意的根都应舍去。

  2。列分式方程解应用题,一般是求什么量,就设所求的量为未知数,这种设未知数的方法,叫做设直接未知数。但有时可根据题目特点不直接设题目所求的量为未知量,而是设另外的量为未知量,这种设未知数的方法叫做设间接未知数。在列分式方程解应用题时,设间接未知数,有时可使解答变得简捷。例如在课堂练习中的第2题,若题目的条件不变,把问题改为求大、小两辆汽车从A地到达B地各用的时间,如果设直接未知数,即设,小汽车从A地到B地需用时间为x小时,则大汽车从A地到B地需(x+5-12)小时,依题意,列方程

  135 x+5-12:135x=2:5。

  解这个分式方程,运算较繁琐。如果设间接未知数,即设速度为未知数,先求出大、小两辆汽车的速度,再分别求出它们从A地到B地的时间,运算就简便多了。

  五、作业

  1。填空:

  (1)一件工作甲单独做要m小时完成,乙单独做要n小时完成,如果两人合做,完成这件工作的时间是______小时;

  (2)某食堂有米m公斤,原计划每天用粮a公斤,现在每天节约用粮b公斤,则可以比原计划多用天数是______;

  (3)把a千克的盐溶在b千克的水中,那么在m千克这种盐水中的含盐量为______千克。

  2。列方程解应用题。

  (1)某工人师傅先后两次加工零件各1500个,当第二次加工时,他革新了工具,改进了操作方法,结果比第一次少用了18个小时。已知他第二次加工效率是第一次的2。5倍,求他第二次加工时每小时加工多少零件?

  (2)某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用的时间相等,求他步行40千米用多少小时?

  (3)已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?

  (4)A,B两地相距135千米,两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟。已知两车的速度之比是5:2,求两辆汽车各自的速度。

  答案:

  1。(1)mn m+n; (2)m a-b-ma; (3)ma a+b。

  2。(1)第二次加工时,每小时加工125个零件。

  (2)步行40千米所用的时间为40 4=10(时)。答步行40千米用了10小时。

  (3)江水的流速为4千米/时。

  课堂教学设计说明

  1 教学设计中,对于例1,引导学生依据题意,找到三个等量关系,并用两种不同的方法列出方程;对于例2,引导学生依据题意,用三种不同的方法列出方程。这种安排,意在启发学生能善于从不同的角度、不同的方向思考问题,激励学生在解决问题中养成灵活的思维习惯。这就为在列分式方程解应用题教学中培养学生的发散思维提供了广阔的空间。

  2 教学设计中体现了充分发挥例题的模式作用。例1是行程问题,其中距离是已知量,求速度(或时间);例2是工程问题,其中工作总量为已知量,求完成工作量的时间(或工作效率)。这些都是运用列分式方程求解的典型问题。教学中引导学生深入分析已知量与未知量和题目中的等量关系,以及列方程求解的思路,以促使学生加深对模式的主要特征的理解和识另?别,让学生弄清哪些类型的问题可借助于分式方程解答,求解的思路是什么。学生完成课堂练习和作业,则是识别问题类型,能把面对的问题和已掌握的模式在头脑中建立联系,探求解题思路。

  3 通过列分式方程解应用题数学,渗透了方程的思想方法,从中使学生认识到方程的思想方法是数学中解决问题的一个锐利武器。方程的思想方法可以用“以假当真”和“弄假成真”两句话形容。如何通过设直接未知数或间接未知数的方法,假设所求的量为x,这时就把它作为一个实实在在的量。通过找等量关系列方程,此时是把已知量与假设的未知量*等看待,这就是“以假当真”。通过解方程求得问题的解,原先假设的未知量x就变成了确定的量,这就是“弄假成真”。


《数学列方程解应用题》小学数学说课稿3篇(扩展2)

——奥数题列方程解应用题3篇

奥数题列方程解应用题1

  某缝纫师做成一件衬衣、一条裤子、一件上衣所用的时间之比为1:2:3.他用十个工时能做成2件衬衣、3条裤子和4件上衣.那么他要做成14件衬衣、10条裤子和2件上衣,共需()工时。

  考点:列方程解应用题

  分析:已知缝纫师做不同衣物所用时间的比为1:2:3,由此可设设缝纫师做一件衬衣的时间为x,则一条裤子的时间为2x,做一件上衣用时为3x.所以据“他用十个工时能做成2件衬衣、3条裤子和4件上衣”,可得方程:2x+3×(2x)+4×(3x)=10,解此方程,求出x的值后即求出他要做成14件衬衣、10条裤子和2件上衣需要的工时是多少.

  解:设缝纫师做一件衬衣的时间为x,则一条裤子的时间为2x,做一件上衣用时为3x.

  由此可得方程:

  2x+3×(2x)+4×(3x)=10

  20x=10,

  x=0.5;

  则完成2件上衣、10条裤子、14件衬衣共需:

  2×(3×0.5)+10×(2×0.5)+14×0.5

  =3+10+7

  =20(工时).

  答:共需20工时.

  故答案为:20.

  点评:人教版小学五年级奥数题列方程解应用题:完成本题的关健是根据他做不同衣物所用时间的比设出未知数,然后再据已知条件得出等量关系式列出方程.

奥数题列方程解应用题2

  1.某果园向市场运一批水果,原计划每车装1.6吨,实际每车装2吨,结果少了4吨,一共有多少辆车?

  2.某班42个同学参加植树,男生*均每人种3棵,女生*均每人种2棵,已知男生比女生多种56棵,男、女生各有多少人?

  3.学校买来科技书的册数是文艺书册数的1.4倍,如果再买12册文艺书,两种书的册数相等。学校买来两种书各有多少册?

  4.学校买6张办公桌和15把椅子共用去660元。已知每张办公桌与3把椅子的价钱相等,求多少元?

  5.东方小学五年级举行数学竞赛,共10 个赛题每做对一题得8分,错一题倒扣5分,张华全部解答,但只得41分,他做对多少题?

  6.松鼠妈妈采松子,晴天每天可采24个,天每天可采16个,他一连几天一共采了168个松子,*均每天采21个,这几天中一共有多少是天晴天?

  7.甲乙两个仓库共有大豆138吨,若从甲仓库运走30吨,从乙仓库运走35吨,这时乙仓库比甲仓库的一半还多4吨,求两个仓库原来各有大豆多少吨?

  8.甲、乙、丙、丁四人共做零件270个,如果甲多做10个,乙少做10个,丙做的个数乘以2,丁做的个数除以2,那么四人做的零件数恰好相等,丙实际做了多少个?

  9.某仓库运出四批原料,第一批运出的占全部库存的一半,第二批运出的占余下的一半,以后每一批都运出前一批剩下的一半。第四批运出后,剩下的原料全部分给甲、乙、丙三个工厂。甲厂分得24吨,乙厂分得的是甲厂的一半,丙厂分得4吨。问最初仓库里有原料多少吨?

  10.某工车间共有77个工人,已知每天每个工人*均可加工甲种部件5个,或者乙种部件4个,或丙种部件3个。但加工3个甲种部件,一个乙种部件和9个丙种部件才恰好配成一套。问应安排甲、乙、丙种部件工人各多少人时,才能使生产出来的甲、乙、丙三种部件恰好都配套?

  11.用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?

  12.哥哥现在的年龄是弟弟当年年龄的三倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁,问哥哥、弟弟现在多少岁?

奥数题列方程解应用题3

  1、操场上有75个学生在活动,其中男生的3/5 和女生的 1/3在跳绳,还有42人在打球。操场上男、女生各有多少人?

  2、甲、乙共存款108元,如果甲取出自己存款的40% ,乙取出12元后,两人所存的钱数相等。甲、乙两人原来各有存款多少元?

  3、袋里有若干个球,其中红球占总数的 5/12,后来又往袋里放了6个红球,这时红球占总数的1/2 。原来袋里有多少个球?

  4、学校六年级比五年级学生数多 3/20,五年级比四年级人数多1/4 ,六年级比四年级多91人,四年级有多少人?

  5、仓库里有一批粮食,调出20%,又调进40吨,这时仓库里的粮食与原有粮食的比是28:25。仓库里现有粮食多少吨?

  6、学校图书馆有一批图书,其中连环画比故事书多48本,两种书被同学们各借走12本后,余下连环画本数的5/21 等于余下故事书本数的 1/3。两种书原来各有多少本?

  7、建造两座房子,其中第一座造价比第二座的3倍少32万元,而第二座房子的造价占两座房子总造价的 3/7,第二座房子的造价是多少万元?

  8、有浓度为2.5%的盐水700克,为了制成浓度为10%的盐水,从中要蒸发掉多少克水?

  9、甲、乙两队合修一条170米长的水渠,已知甲队修的 比乙队修的 还多10米,问:乙队比甲队少修多少米?

  10、一个书架有两层,上层书的本数是下层的3/4 ,若从下层拿8本到上层,则两层的书一样多。这个书架共有多少本?


《数学列方程解应用题》小学数学说课稿3篇(扩展3)

——小升初数学列方程解应用题 (菁选3篇)

小升初数学列方程解应用题1

  1. 甲、乙、丙三条铁路共长1191千米,甲铁路长比乙铁路的2倍少189千米,乙铁路长比丙铁路少8千米,求甲铁路的长.

  2. 一个工程队由6个粗木工和1个细木工组成.完成某项任务后,粗木工每人得200元,细木工每人工资比全队的*均工资多30元.求细木工每人得多少元.

  提示 设细木工每人得x元,那么全队的*均工资是(x—30)元.这样全队总工资可由两个式子表示:7(x—30)或(200×6+x).

  3. 小明期中考试语文、数学、地理三科*均分为96分,常识分数比语文、数学、地理、常识四科*均分少3分.求常识分数.

  4. 电视机厂装配一批电视机,计划25天完成,如每天多装35台,24天能超额完成60台.求原计划每天装配多少台.

  5. 师徒俩要加工同样多的零件,师傅每小时加工50个,比徒弟每小时多加工10个.工作中师傅停工5小时,因此徒弟比师傅提前1小时完成任务.求两人各加工多少个零件.

  6. 买2.5千克苹果和2千克橘子共用去13.6元,已知每千克苹果比每千克橘子贵2.2元,这两种水果的单价各是每千克多少元?

  7. 买4支钢笔和9支圆珠笔共付24元,已知买2支钢笔的钱可买3支圆珠笔,两种笔的价钱各是多少元?

小升初数学列方程解应用题2

  1. 甲、乙、丙三条铁路共长1191千米,甲铁路长比乙铁路的2倍少189千米,乙铁路长比丙铁路少8千米,求甲铁路的长。

  _____________________________________

  2. 一个工程队由6个粗木工和1个细木工组成。完成某项任务后,粗木工每人得200元,细木工每人工资比全队的*均工资多30元。求细木工每人得多少元。

  提示 设细木工每人得x元,那么全队的*均工资是(x—30)元。这样全队总工资可由两个式子表示:7(x—30)或(200×6+x)。

  _____________________________________

  3. 小明期中考试语文、数学、地理三科*均分为96分,常识分数比语文、数学、地理、常识四科*均分少3分。求常识分数。

  _____________________________________

  4. 电视机厂装配一批电视机,计划25天完成,如每天多装35台,24天能超额完成60台。求原计划每天装配多少台。

  _____________________________________

  5. 师徒俩要加工同样多的零件,师傅每小时加工50个,比徒弟每小时多加工10个。工作中师傅停工5小时,因此徒弟比师傅提前1小时完成任务。求两人各加工多少个零件。

  _____________________________________

  6. 买2.5千克苹果和2千克橘子共用去13.6元,已知每千克苹果比每千克橘子贵2.2元,这两种水果的"单价各是每千克多少元?

  _____________________________________

  7. 买4支钢笔和9支圆珠笔共付24元,已知买2支钢笔的钱可买3支圆珠笔,两种笔的价钱各是多少元?

  _____________________________________

小升初数学列方程解应用题3

  例: 六(1)班举行一次数学测验,采用5级计分制(5分最高,4分次之,以此类推)。男生的*均成绩为4分,女生的*均成绩为3.25分,而全班的*均成绩为3.6分。如果该班的人数多于30人,少于50人,那么有多少男生和多少女生参加了测验?

  解:设该班有x个男生和y个女生,于是有

  4x+3.25y=3.6(x+y),

  化简后得8x=7y。从而全班共有学生

  在大于30小于50的自然数中,只有45可被15整除,所以

  推知x=21,y=24。

  答:该班有21个男生和24个女生。


《数学列方程解应用题》小学数学说课稿3篇(扩展4)

——小考数学应用题3篇

小考数学应用题1

  1、一件工程,甲独做10天完工,乙独做15天完工,二人合做几天完工?

  2、一批零件,王师傅单独做要15小时完成,*单独做要20小时完成,两人合做,几小时能加工完这批零件的3/4?

  3、一项工作,甲单独做要10天完成,乙单独做要15天完成。甲、乙合做几天可以完成这项工作的80%?

  4、一项工程,甲独做要12天完成,乙独做要18天完成,二人合做多少天可以完成这件工程的2/3?

  5、一项工程,甲独做要18天,乙独做要15天,二人合做6天后,其余的由乙独做,还要几天做完?

  6、修一条路,甲单独修需16天,乙单独修需24天,如果乙先修了9天,然后甲、乙二人合修,还要几天?

  7、一项工程,甲单独做16天可以完成,乙单独做12天可以完成。现在由乙先做3天,剩下的由甲来做,还需要多少天能完成这项工程?

  8、一项工程,甲独做要12天,乙独做要16天,丙独做要20天,如果甲先做了3天,丙又做了5天,其余的由乙去做,还要几天?

  9、一批货物,由大、小卡车同时运送,6小时可运完,如果用大卡车单独运,10小时可运完。用小卡车单独运,要几小时运完?

  10、小王和小张同时打一份稿件,5小时打了这份这稿件的5/6。如果由小王单独打,10小时可以打完。求如果由小张单独打,几小时可以打完。

  11、一项工程,甲队独做15天完成,乙队独做12天完成。现在甲、乙合作4天后,剩下的工程由丙队8天完成。如果这项工程由丙队独做,需几天完成?

  12、甲和乙两队合修一条公路,完成任务时,甲队修了这条公路的8/15。如果乙队单独完成要24天,甲队单独做几天完成?

  13、一项工程,甲独做要10天,乙独做要15天,丙独做要20天。三人合做期间,甲因病请假,工程6天完工,问甲请了几天病假?

  14、一袋米,甲、乙、丙三人一起吃,8天吃完,甲一人24天吃完,乙一人36天吃完,问丙一人几天吃完?

  15、一条公路长1500米,单独修好甲要15天,乙要10天,两队合修需几天才能完成?

  16、师徒共同完成一件工作,徒弟独做20天完成,比师傅多用4天完成,如果师徒合作需几天完成?

  17、一项工程,由甲工程队修建,需要20天完成;由乙工程队修建,需要的天数是甲工程队的1、5倍才能完成。两队合修共需要多少天完成工程?

  18、一件工作,甲单独完成需要8天,乙的工作效率是甲的2倍,两人同时合作,几天能完成这件工作?

  19、一项工程,甲队独做要20天完成,乙队独做要5天能完成全工程的1/6。现由两队合做,多少天可以完成?

  20、修一条水渠,甲队3天可以修全长的1/10,乙队单独修20天可以修完,如果两队合修,多少天可以修完?

  21、一件工作,甲队独做每天能完成这件工作的1/20,乙队单独完成这件工作需要12天,如果两面三刀队合作完成这件工作的1/20,需要多少天?

  22、一件工作,甲单独做需要12天,乙的工作效率是甲的3/4,两个合做,几天能完成这件工作的4/5?

  23、一套家具,由一个老工人做40天完成,由一个徒工做80天完成。现由2个老工人和4个徒工同时合做,几天可以完成?

  24、一个水池上有两个进水管,单开甲管,10小时可把空池注满,单开乙管,15小时可把空池注满。现先开甲管,2小时后把乙管也打开,再过几小时池内蓄有3/4的水?(原是空池)

  25、一项工程,甲独做15天完成,乙独做12天完成。如果乙先做3天,余下的由甲做,还需要多少天完成?合修多少天可完成工程的9/10?

  26、打一份稿件,甲打字员单独打要10天,乙打字员单独打要8天。

  (1)甲、乙两位打字员合打4天,这份稿件还剩几分之几?

  (2)甲、乙两位打字员合打,需要多少天完成?

  (3)甲打字员先打3天,乙打字员再打2天,可完成这份稿件的几分之几?

  (4)甲打字员先打27、天,剩下的由甲、乙打字员合打,还需几天完成?

  28、有一个水池,用乙抽水机8小时可以把全池水的1/3抽完,用甲抽水机抽水6小时可以把全池水的1/5抽完。若两台抽水机同时工作,几小时可将全池的水抽完?

  29、运一堆石子,甲、乙两辆卡车合运要运6次,由乙卡车单独运需要15次,现由*车运4次,剩下的由乙再运,还需运几次才能运完?

  30、一辆汽车从甲地开往乙地需8小时,一辆摩托车从甲地到乙地需6小时。现两车同时从甲、乙两地相对开出,经过3小时,两车还相距全程的几分之几?

  31、挖一条水渠,乙独干4天可以完成这条水渠的1/6,甲独干要18天。如果甲、乙合干4天,余下的由甲接着干,还需几天挖完?

  32、一个水池,装有甲、乙、丙三根水管,单开甲管6小时可将水池注满,单开乙管8小时可将水池注满,单开丙管12小时可将满池水放完。如果甲、乙、丙三管同时打开,多少小时可注满半池水?

  33、甲、乙两车分别从东西两城同时出发相向而行,12小时后两车相遇。实际乙车出发4小时后因故障停车,甲车又走了20小时才与乙车相遇,求甲车单独走完全程需要几小时?

  34、一件工程,甲、乙合做10天完成,乙、丙合作8天完成,甲、丙合作12天完成。如果甲、乙、丙三人合作,多少天可以完成?

  35、修一条路,乙队单独修需20天完成,甲队单独修需30天完成。现由甲、乙两队合修若干天后,甲队调出另有任务,修完这条路公用了18天,求甲队修了几天?

  36、甲、乙两人骑车同时从A、B两地相对而行,经过6小时相遇。相遇后,甲又行了4小时到达B地,乙还要行几小时到达A地?

  37、加工一批零件,乙单独加工8小时完成,甲单独加工10小时完成,甲、乙两人合作4小时加工了207个零件。这批零件共有多少个?

  38、加工一批零件,甲每天加工36个,乙单独干需15天,现在由甲、乙同时合干,干完时,乙完成了这批零件的2/5。这批零件共多少个?

  39、货车和客车同时从甲、乙两站相对开出,10小时后相遇。已知货车和客车的速速比是4:5,货车和客车行完全程各需几小时?

  40、甲、乙两车同时从A、B两地相向而行,当甲车行了全程的3/5时,正好和乙车相遇。已知乙车每小时行56千米,甲车从A地到B地需要行5小时。求A、B两地相距多少千米?

  41、完成一件工作,甲单独做要15天,乙单独做要10天,丙单独做要20天。现在三人合作,中间乙因病休息了几天,结果用6天完成任务。乙休息了多少天?

  42、加工一批零件,甲独做20天完成,乙独做12天完成,甲、乙合作完成任务时,甲做了216个。这批零件共多少个?

  43、加工一批零件,甲、乙合作15天完成。如果甲做3天,乙做5天,可完成全部任务的7/30。已知乙每天做18个,这批零件共有多少个?

  44、一个筑路队有13人,3天修路9.75千米,如果每人的工作效率不变,15人5天修路多少千米?

  45、甲、乙两地的距离是496千米,一辆客车从甲地开往乙地,每小时行64千米,行驶1小时后,一辆货车从乙地开往甲地,每小时行56千米。货车开出几小时后与客车相遇?

  46、一件工作,甲队做2天,乙队做5天,共完成它的4/15;甲做5天,乙做2天,共完成它的19/60,问甲、乙两队单独做各需要多少天?

  47、从甲地到乙地,慢车要行15小时,快车要行10小时,慢车从乙地开出5小时后,快车从甲地开出,再经过几小时两车相遇?

  48、一件工程,甲、乙两人合作8天可以完成;乙、丙两人合作6天可以完成;丙、丁两人合作12天可以完成。那么甲、丁合作几天可以完成?

  49、超市购进12箱儿童牙膏,每箱25盒,每盒卖4元钱。这些儿童牙膏可卖多少元?(用两种方法解答)

  50、一本故事书小明要12天看完,前5天每天看18页,后7天每天20页。这本书共有多少页?

小考数学应用题2

  1、两地相距600米,两车相向而行,4小时后两车相遇。已知甲车的速度是乙车的4/5,求甲乙两车的速度各是多少?

  2、一个长方形的周长是18米,长和宽的比是5:4,这个长方形的面积是多少*方米?

  3、某校六年级三个班的人数在100-150之间,在学校运动会上,六一班运动员占全年级人数的1/6,六二班占1/8,六三班占1/9,六年级共有多少人?

  4、商店运来一批电冰箱,卖了18台,卖出的台数与剩下的台数比是3:2,求运来电冰箱多少台?

  5、学校有足球蓝球共65个,其中足球和蓝球数量比是1:4,今年又买回一些足球,这时足球和篮球数量比是3:4,今年买回足球多少个?

  6、大母鸡和小母鸡的生蛋数量比是10:9,大母鸡比小母鸡多生2个鸡蛋,求大、小母鸡各生多少个蛋?

  7、甲乙两人下班回家,甲走的路程比乙多1/5,乙用的`时间比甲多1/8,求甲乙两人的速度比

  8、建筑工地用2份水泥,3份沙子和5份石子配制一种混凝土,要配12吨这种混凝土需要水泥、沙子和石子各多少吨?

  9、一种混凝土的水泥、黄沙和石子的比是2:3:5,如果有2/5吨的水泥搅拌混凝土,需要黄沙、石子各多少吨?

  10、三个同学跑步,甲、乙、丙的速度比是4:3:2.甲跑了600米,乙比丙多跑多少米?

  11、冬冬体重38千克,表弟体重是他的一半,而爷爷体重是表弟的4倍。爷爷体重是多少千克?

  12、四年级同学去看儿童剧。一班去了32个学生,二班去了34个学生,还去了2位班主任老师。学生票6元,*票12元,买票需要多少钱?

  13、学校门前新修的马路长96米,要在马路两边栽上树,每两棵树之间相距8米(两端都要栽)。一共要栽多少棵树?

  14、服装加工厂要做980套衣服,已经做了320套。如果剩下的衣服要6天做完,*均每天要做多少套?

  15、学校买来5盒羽毛球,每盒12个,共用240元,*均每个羽毛球多少元钱?

  16、月月3分钟跳绳522下,莉莉3分钟跳了504下,*均每分钟月月比莉莉多跳多少下?

  17、小华步行4千米680米,用了1时18分,*均每分行多少米?

  18、一辆自重3吨的卡车,车上装有7000千克木料,要通过一座限重11吨的桥、算一算,卡车能否通过这座桥?

  19、28行播种机的宽度是4米、用拖拉机牵引,每小时行5千米,可以播种多少公顷土地?

  20、甲、乙两堆货物共重8000千克,已知甲堆货物的重量是乙堆货物的4倍、求甲、乙两堆货物各重多少千克?

  21、新修一条公路,已经完成64千米,剩下的比完成的3倍少25千米,这条公路全长多少千米?

  22、化肥厂六月份生产化肥483.6吨,七月份上半月生产254.8吨,下半月生产287.4吨,七月份比六月份多生产化肥多少吨?

  23、师傅每天加工200个零件,徒弟5天的工作量等于师傅4天的工作量、徒弟单独工作要多少天才能完成1120个零件?

  24、要架一条7200米长的电缆,计划12天完成任务,实际9天就完成任务,实际每天比计划每天多架设多少米?

  24、一双布鞋25.65元,一双皮鞋比布鞋贵21*5元,王老师买一双皮鞋付给售货员300元,应找回多少元钱?

  26、果园里种苹果树2600棵,桃树1150棵,梨树1250棵、*均每棵树占地14*方米,这个果园占地多少公顷?

  27、甲有14.8元,乙有15.2元,俩人要合买一个足球,一个足球的价钱是他俩人钱数总和的2倍,一个足球多少元,他们还差多少元?

  28、一台机器3小时耕地15公顷,照这样计算,要耕75公顷地,用5台机器需要多少小时?

  29、商店有14箱鸭蛋,卖出去250千克后,还剩4箱零20千克,每箱鸭蛋有多少千克?

  30、光明小学为山区同学捐书,四年级捐240本,五年级捐的是四年级的2倍,六年级比五年级多捐120本,*均每个年级捐多少本?

  31、粮店运进大米、面粉各20袋,每袋大米90千克,每袋面粉25千克,运进的大米比面粉多多少千克?(用两种方法解答)

  32、两根绳共长48.4米,从第一根上剪去*米后,第二根比第一根剩下的2倍还多6米、两根绳原来各长多少米?

  33、甲、乙两个班都有学生48人,每人做16朵纸花送给幼儿园,一共送了多少朵?

  34、甲、乙两地相距456千米,一列火车从甲地开往乙地,*均每小时行76千米,需要几小时?

  35、有两个粮食仓库,如果第一个仓库运走2500千克,两个仓库存粮一样多,已知第二个仓库存粮原有50200千克,原来两个粮库共存粮多少千克?

  36、师傅每小时生产机器零件64个,徒弟每小时生产48个零件,师傅3小时生产的零件,徒弟要几小时完成?

  37、一块长方形菜地长120米,宽60米,如果每12*方分米种一棵西红柿,这块菜地一共可以种多少棵西红柿?如果每棵西红柿收3千克,一共收西红柿多少千克?

  38、公园里有松树64棵,比柳树少16棵,杨树的棵数等于松树、柳树棵数和的3倍,公园里有杨树多少棵?

  39、儿童节时两组同学用3小时共做花240朵,第一组每小时做44朵花,第二组有6人,*均每人每小时做花多少朵?

  40、民工队修一条水渠,计划每天修84米,34天可以完成,结果每天修102米,可以提前几天完成?

  41、一块长方形菜地面积是1公顷,长125米、一块麦田长250米,这两块地的宽相等,麦田的面积是多少*方米?合多少公顷?

  42、一辆汽车从甲地开往乙地,前两小时行了90千米,第三小时行了48千米,正好到达乙地、这辆汽车*均每小时行多少千米?

  43、果园收一批苹果、用小筐装每筐能装25千克,需要28个筐,如果改用10个大筐装,还要剩下50千克、*均每个大筐装多少千克?

  44、一个图书馆有24个同样的书架,每个书架有4层,每层放240本书。这些书架一共能放多少本书?

  45、立新小学六年级学生参加植树活动。一班有40人,*均每人植树4棵,二班有38人,*均每人植树5棵,二班比一班多植树多少棵?

  46、文具店去年*均每月营业额9000元,今年预计能提前2个月达到去年的营业额今年预计*均每月的营业额是多少元?

  47、某校要给1100名学生每人配一个水杯,每个水杯3元。“六一”期间超市推出优惠价,每买10个送1个。这样学校在优惠期购买水杯,可比*时便宜多少钱?

  48、六一儿童节,王老师为小朋友购买演出用的服装,买3件T恤和5件短裤的钱同样多。每件短裤39元,每件T恤多少元?

  49、小兰的妈妈带50元钱去买菜,买荤菜用去28.75元,买素菜用6.35元。还剩多少元钱?

  50、学校食堂运来大米和面粉各8袋,大米每袋50千克,面粉每袋25千克,一共运来粮食多少千克?

小考数学应用题3

  1、一辆汽车从甲地到乙地,前3小时行了156千米,照这样速度,从甲地到乙地共需8小时,甲、乙两地相距多少千米?

  2、工程队修一条公路,计划每天4.5千米,20天完成,实际每天修6千米,实际几天可修完?

  3、200克的海水可以晒出6克盐。照这样计算,6吨海水可以晒出盐多少吨?

  4、 同学们做操,每行站20人,正好站18行,如果每行多站4人,要站多少行?

  5. 有一堆煤,每天烧5吨,可以烧180天,如果每天烧4.5吨,可以烧多少天?

  6. 一辆汽车3次可运货物450吨,照这样计算,再运4次,一共可运货物多少呢?

  7. 学校食堂用方砖铺地,如果用面积为9dm2的方砖,需要48块。如果改用面积为16dm2的方砖,需要多少块?


《数学列方程解应用题》小学数学说课稿3篇(扩展5)

——小学数学解应用题说课稿 (菁选3篇)

小学数学解应用题说课稿1

  一、对教材的分析

  列方程解应用题是在第七册学习列出含有未知数的等式解一步计算应用题的基础上进行教学的。共分四个层次,首先教学比较容易的两步计算的应用题,其次教学两、三步计算的应用题,本课内容是第三个层次,第四是用方程和算术方法解应用题的比较。列方程解含有两个未知数的应用题,是第一次出现在全国统编教材上。例6的内容,在算术中称为"和倍"和"差倍"问题,由于是逆向思考题,解法特殊,不易掌握,现在用方程来解,不仅思路较简单,而且这两类问题的思路统一,解法一致,既可减轻学生负担又提高了解应用题的能力,是今后小学学习分数等应用题的基础,也是今后到中学继续学习代数方程解应用题所必须具备的知识,必须重视这部分内容的教学。

  本节课的教学目标是使学生初步掌握含有两个未知数的应用题的解题思路和方法,会解含有两个未知数的应用题;会用把两个未知数的值代入已知条件看是否符合的方法进行验算;在教学解题思路的同时培养学生初步的分析、综合、比较的能力;在解题过程中进一步培养初步的类推和迁移的能力及养成独立思考的良好习惯。

  本节课的重点是正确设未知数和列出方程,关键要找出等量关系,列方程也是教学的难点。

  二、对教学方法的选择

  列简易方程解应用题是中学列代数方程解应用题的基础,选择教学方法时,要注意中小学教学的衔接。

  本节课首先要考虑正确运用迁移原理,这对中、小学的学习都将具有积极作用。在准备阶段的练习题中,不论是数量关系和解题的方法对学习例6都具有迁移的作用,利用这一原理可引导学生直接去做例6后的"想一想",这既能培养迁移推理能力,也能促使学生养成独立思考的习惯。

  其次,由于小学生仍处在从形象思维向抽象思维过渡的关键时刻,所以要考虑怎样做好这个过渡,在教学中采用画线段图帮助分析数量关系。线段图能使数量关系明显地呈现出来,有助于帮助学生设未知数,找等量关系和列出方程。

  第三还要考虑学法指导。本课要教会学生阅读、分析应用题的方法、验算的方法,从不同角度思考问题的方法。在教学检验方法时,采用阅读的方式,让学生边读边想并说出两个检验式子的含义与作用,从中悟出检验的方法。教完例6后引导学生想不同的解题思路,列出不同的方程,就是教学生如何从不同角度思考问题的方法。这些方法对今后继续学习数学是十分必要的。

  三、对教学环节的安排

  本课教学分三个阶段。

  第一阶段是复习旧知,为学习新知做好铺垫。

  主要针对新授的内容和学生不习惯用方程解及感到列方程有困难等问题设计了三个教学环节。一是基本训练,进行列方程的训练,如,x的5倍与x的和是80;根据题意把方程写完全的训练,如,果园里原有桃树x棵,杏树135棵,两种树一共有180棵。根据线段图列方程的训练,如,第二个环节是练习例6前的复习题,对学生再现了三年级的内容是为学习例6"架桥"。为学习新课予作准备。第三个环节是导入新课。从改变复习题中的问题和一个条件,将复习题变成例6。使学生感到数量关系并不生疏,但由于需要逆向思考,学生又感到难做,以激发学生学习动机,为学习新课提供良好的情感和认知的起点。(第一阶段需5分钟左右)

  第二阶段是教学解答应用题的思路和方法,是教学的重点,也是难点。

  按照列方程解应用题的一般步骤安排四个环节。一是审题。即,全面分析已知数与已知数、已知数与未知数、未知数与未知数之间的关系,画好线段图,找出已知数,并将其中的一个设为x,而另一个则根据题中的一个条件写成含x的代数式。解答例6就应先设桃树为x棵,根据杏树是桃数的3倍这一条件得出杏树为3x棵,画好的线段图如下:二是找出等量关系列出

  方程。前面设未知数时已使用了一个条件,现在用另一个条件来列方程。即根据桃树和杏树共180棵列出方程x+3x=180;也可根据桃树和杏树共180棵来设未知数,根据另一条件列方程。这时设桃树为x棵,杏树是(180-x)棵,列出的方程是180-x=3x;也可设杏树为x棵,根据杏树是桃树的3倍,得出桃树是13x棵,列出的方程是x+13x=180;也可根据另一个条件设未知数,即设杏树为x棵,桃树是(180-x)棵,列出的方程是x=3(180-x)。但后几种方程解起来不方便,有的方程目前学生还不会解,教学时可要求学生只列不解。这些方程的列出有利于全面掌握数量关系,也有利于掌握,先根据一个条件设第二个未知数,再根据另一个条件列方程的基本思路和方法。但不能要求全体学生都会列出,特别是中差生,只掌握书中的一种即可。列出这些方程后,学生自然会得出书中列出的方程容易解,为此,教育学生今后学习时,不仅要考虑列出的方程是否正确,还要考虑列出的方程是否易解的问题。

  第四个环节是检验。虽不要求写在本子上或卷子上,但这是不可忽视的重要步骤,长期要求下去,就可使学生养成良好的检验习惯,增强责任心和自信心,那种做完题不知对错的做法是后患无穷的。(这个阶段需20分钟左右)。

  第三阶段是巩固练习,安排三个层次。

  一是巩固新知的练习,可做128页"做一做"中的题目。接着做"想一想"题目,让学生独立用解"和倍"题的方法解"差倍"题,完成知识的迁移。第二环节安排课堂上的独立作业(5分钟左右)让学生独立做129页练习的第一、二题,(对较好的学生教师根据实际情况增加题目)做完之后要认真进行讲评、纠正错误和打开思维受阻之处。

小学数学解应用题说课稿2

  教学内容

  列方程解应用题

  教学目标

  1.使学生学会根据两个未知量之间的关系,列方程解答求含有两个未知数的应用题。

  2.使学生能根据应用题的具体情况灵活选择解题方法,培养学生主动获取知识的能力和习惯。

  3.使学生学会用检验答案是否符合已知条件的方法,提高学生求解验证的能力。

  教学重点

  列方程解答数量关系稍复杂的两、三步应用题。

  教学难点

  形如:ax+bx=c的数量关系

  教学理念

  培养学生自主探究、合作交流的学习方式。提高学生的检验能力。

  教师活动过程

  学生活动过程备注

  一、复习铺垫

  1练习二十一T1

  学生回答

  2根据条件说出数量关系式:

  果园里的桃树和梨树一共有168棵。

  果园里的桃树比梨数多84棵。

  桃树棵数是梨树的3倍。

  学生回答数量关系式

  3你能选择其中两个条件,提出问题,编成一道应用题吗?试试看!

  学生自主编题,口头说题

  4依据学生回答,教师出示题目。

  A.根据条件(1)、(2)编题:果园里梨树和桃树一共有168棵,桃树比梨树多84棵。梨树和桃树各有多少棵?

  B.根据条件(1)、(3)编题:果园里梨树和桃树一共有168棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(例1)

  C.根据条件(2)、(3)编题:果园里的桃树比梨树多84棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(想一想)

  教师巡视,了解情况。

  二.探究新知

  1.学生尝试例1

  引导学生画出线段图

  集中反馈:生说师画图

  2.教师组织学生汇报

  学生介绍算术解法时,教师引导学生画线段图理解数量间的关系。

  学生介绍方程解法时,注重让学生说出怎样找数量间的相等关系。

  3.小组讨论。

  解这道题,你认为算术方法和列方程解哪一种比较容易找到解题的数量关系,为什么?

  用方程解,设哪个数量为X比较合适?用什么数量关系式来列式呢?

  4.学生独立完成想一想。

  这一题与例1有什么相同的地方?有什么不同的地方?

  明确三点:1、一般设一倍数为X。2、把几倍数用含有X的式子表示。3、通过列式计算,可以检验两个得数的和(差)及倍数关系是否符合已知条件。

  5完成课本94页练一练

  指名板演,其余集体练习,评讲时让学生说说是怎样想的,怎样检验?

  三、小结

  本课学习了什么内容?你有哪些收获?

  四、作业

小学数学解应用题说课稿3

  教学目标:

  1.通过复习,使学生能够运用所学知识,采用列方程的方法解答应用题.

  2.让学生独立思考,合作交流,确定等量关系,正确用方程解答应用题

  3.培养学生利用恰当的方法解决实际问题的能力。

  教学重点:

  通过复习,使学生弄请已知量与未知量的联系,找出题目中的等量关系.

  教学难点:

  通过复习,使学生能够准确的找出题目中的等量关系.

  教学过程:

  一、复习准备.(P107)

  1.找出下列应用题的等量关系.

  ①男生人数是女生人数的2倍.

  ②梨树比苹果树的3倍少15棵.

  ③做8件大人衣服和10件儿童衣服共用布31.2米.

  ④把两根同样的铁丝分别围成长方形和正方形.

  (学生回答后教师点评小结)

  我们今天就复习运用题目中的等量关系解题.(板书:列方程解应用题)

  二、新授内容

  1、教学例3、

  (1)、一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米?

  ①.读题,学生试做.

  ②.学生汇报(可能情况)

  (90+75)×4

  提问:90+75求得是什么问题?再乘4求的是什么?

  90×4+75×4

  提问:90×4与75×4分别表示的是什么问题?

  (由学生计算出甲乙两站的铁路长多少千米。)

  (2)、甲乙两站之间的铁路长660千米,一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站。经过多少小时相遇?

  (先用算术方法解,再用方程解)

  ①、660÷(90+75)=?

  ②方程

  解:设经过x小时相遇,

  (90+75)×x=660或者,90×x+75×x=660

  让学生说出等量关系和解题的思路

  教师小结(略)

  (3)、甲乙两站之间的铁路长660千米。一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车从乙站开往甲站,经过4小时相遇。货车每小时行多少千米?

  (先用算术方法解,再用方程解)

  ①、(660—90×4)÷4=?

  ②、方程

  解:设货车每小时行x千米

  90×4+4x=660或者(90+x)×4=660

  让学生说出等量关系和解题的思路

  教师小结(略)

  让学生比较上面三道应用题,它们有什么联系和区别?

  比较用方程解和用算术方法解,有什么不同?

  教师提问:这两道题有什么联系?有什么区别?

  三、巩固反馈.(P109---1题)

  1.根据题意把方程补充完整.

  (1)张华借来一本116页的科幻小说,他每天看x页,看了7天后,还剩53页没有看.

  _____________=53

  _____________=116

  (2)妈妈买来3米花布,每米9.6元,又买来x千克毛线,每千克73.80元.一共用去139.5元.

  _____________=139.5

  _____________=9.6×3

  (3)电工班架设一条全长x米长的输电线路,上午3小时架设了全长的21%,下午用同样的工效工作1小时,架设了280米.

  _____________=280×3

  2.(P110----4题)解应用题.

  东乡农业机械厂有39吨煤,已经烧了16天,*均每天烧煤1.2吨.剩下的煤如果每天烧1.1吨,还可以烧多少天?

  小结:根据同学们的不同方法,我们需要具体问题具体分析,用哪种方法简便就用哪种方法.

  3.思考题.

  甲乙两个港相距480千米,上午10时一艘货船从甲港开往乙港,下午2时一艘客船从乙港开往甲港.客船开出12小时后与货船相遇.如果货船每小时行15千米.客船每小时行多少千米?

  四、课堂总结.

  通过今天的复习,你有什么收获?

  五、课后作业.

  (P110---5题)不抄题,只写题号。

  板书设计:

  列方程解应用题

  等量关系具体问题具体分析

  例3:一列火车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千


《数学列方程解应用题》小学数学说课稿3篇(扩展6)

——小升初数学应用题攻略

小升初数学应用题攻略1

  (1) 简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。

  (2) 解题步骤:

  a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。也可以复述条件和问题,帮助理解题意。

  b 选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。

  c 检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。

  d 答案:根据计算的结果,先口答,逐步过渡到笔答。

  (3) 解答加法应用题:

  a 求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。

  b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。

  (4) 解答减法应用题:

  a 求剩余的应用题:从已知数中去掉一部分,求剩下的部分。

  b 求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。

  c 求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少。

  (5) 解答乘法应用题:

  a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。

  b求一个数的"几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。

  (6) 解答除法应用题:

  a 把一个数*均分成几份,求每一份是多少的应用题:已知一个数和把这个数*均分成几份的,求每一份是多少。

  b 求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。

  c 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。

  d 已知一个数的几倍是多少,求这个数的应用题。

  (7)常见的数量关系:

  - 总价= 单价×数量

  - 路程= 速度×时间

  - 工作总量=工作时间×工效

  - 总产量=单产量×数量


《数学列方程解应用题》小学数学说课稿3篇(扩展7)

——小学数学分配律应用题

小学数学分配律应用题1

  1.李口和向阳两个学校的学生到烈士墓去,所去人数都是10的倍数,租14座的中巴一共要72辆,如果改租19座的中巴,李口比向阳多用车7辆,两校参加扫墓的学生各多少人?

  解:充分利用10的倍数。

  两个学校共有人数比14×72=1008人少,比14×71=994人多,即共有1000人。

  改租19座的中巴后,可以乘坐1000÷19=52辆……12人,即53辆车。

  所以李口学校租车(53+7)÷2=30辆车,向阳学校租车30-7=23辆。

  所以李口学校有学生30×19=570人,向阳学校有学生1000-570=430人。

  验证一下:

  如果李口少10人,还是30辆车,向阳学校有学生430+10=440人

  440÷19=23辆……3人,需要24辆车,相差30-24=6辆,不符合要求。

  两校参加扫墓的学生共有:14×72=1008(人)

  因去的人数是10的倍数,车辆不能超员,所以学生总数1000人;

  设:李口学生数为x,则向阳学生数为1000-x

  李口租19座的中巴数=x/19

  向阳租19座的中巴数=(1000-x)/19

  x/19-(1000-x)/19=7

  2x-1000=7x19

  2x=1133

  李口学生数为x=570(人)

  向阳学生数为1000-x=430(人)

  2.一个正方形,如果一边减少25%,另一边增加3米,所得到的长方形与原来正方形面积正好相等,那么正方形面积是多少?

  解:正方形的边长=3×(1-25%)÷25%=9

  所以,面积是9×9=81*方米。

  解:设原来的边长为X米,则可以列出方程;

  XxX=(-20%)Xx(X+3)

  解得:X=9

  将X=9代入,解得XxX(正方形面积)=9x9=81*方米

  答:正方形面积为81*方米。

  3.通讯员以每小时6千米的速度到某地去,返回时因绕另一条路而多走3千米,回程时他每小时行7千米,仍比去时多用10分钟,问往返各是多少千米?

  解:3千米需要的时间是3÷7=3/7小时,用3/7-10/60=11/42小时的时间相当于去的时候的1-6/7=1/7,所以,去时的时间是11/42÷1/7=11/6小时。所以去的时候的路程是11/6×6=11千米,返回就是11+3=14千米。

  4.两个集镇之间的公路除了上坡就是下坡,没有水*路段,客车上坡的速度保持为15千米,下坡的速度保持为每小时30千米,现知道客车在两地之间往返一次,需在路上行驶4个小时,求两地之间的距离.

  解:去时的下坡是返回的上坡,去时的上坡是返回上的下坡。所以所有的上坡路和下坡路相等。上坡和下坡的速度比是15:30=1:2。下坡用去的时间是4÷(1+2)=4/3小时,所以上坡路长4/3×30=40千米。故两地之间的距离是40千米。

  设:两地之间的距离为x;

  在两地之间往返一次,上坡的路程等于下坡的路程等于x。

  x/15+x/30=4

  x(1/15+1/30)=4

  x/10=4

  x=40(千米)

  两地之间的距离为40千米

  5.有一台机器,使用了一种类型的零件1000个,一周内报废的零件在本周末换新零件.在新零件中有10%在第一周末报废,有30%在第二周报废,有60%在第三周末报废,没有能使用四周以上的零件.问(1)新机器中必须在第二周末换新的零件的个数是多少?(2)新机器中必须在第三周末换新零件的个数是多少?

  解:第一周报废1000×10%=100个。第二周末换新的个数有1000×30%+100×10%=310个。第三周末换新的零件有1000×60%+100×30%+310×10%=661个。

  6.某商店到苹果产地去收购苹果,收购价为每千克1.20元.从产地到商店距离400千米,运费为每吨货物每运1千米收1.50元.如果不计损耗,商店要想实现25%的利润,每千克的售价是几元?

  解法一:每吨的运到商店的成本是1.20×1000+400×1.5=1800元。

  要实现25%的利润,每吨应售1800×(1+25%)=2250元。

  所以每千克的售价是2250÷1000=2.25元。

  解法二:每千克运费是400×1.5×1000=0.6元,成本就是1.2+0.6=1.8元。

  所以每千克的售价是1.8×(1+25%)=2.25元。

  7.长途汽车首班车是7点整,第二班车是8点20分.首班车开走后,一位旅客急匆匆地赶到车站,问值班员现在是几点,值班员说:"首班车开走后经过的时间是现在到第二班车开车时间的3/5."现在的时间是几点几分?

  解:7点整到8点20分,共60+20=80分。剩下的时间是80÷(1+3/5)=50分。

  首班车开出了80-50=30分。所以现在是7点30分。

  现在到第二班车开出为1

  首班已开出1的3/5

  那就是第一班与第二班车的时间等于1+3/5

  于是现在离第二班车开车时间是:(60+20)/1+3/5=50分钟

  现在的时间是7点加(80-50)

  现在是7点30分

  8.一只每天快5分钟的钟,现在将它的时间对准,这只钟下次显示准确时间需要经过几天?

  解:标准时间过24小时,这个钟,就要多走5分钟。12小时共12×60=720分钟。

  那么需要720÷5=144天。

  9.一列火车的车身长800米,行驶的速度是每小时60千米,铁路上有两座隧洞.火车从车头进入第一个隧洞到车尾离开第一个隧洞用2分钟,从车头进入第二个隧洞到车尾离开第二个隧洞用3分钟,从车头进入第一个隧洞到车尾离开第二个隧洞共用6分钟.两座隧洞之间相距多少米?

  解:从车尾离开第一个隧道到车头进入第二个隧道,火车行了6-3-2=1分钟。

  行了60÷60×1000=1000米。两座隧道之间相距的距离是1000+800=1800米。

  10.A,B两地相距54千米,有18人共同骑7匹马,由A地到B地,每匹马每次只能驼1人,为了轮换休息,大家决定每人骑马行1千米,轮换一次.问每人骑马、步行各多少千米?

  解:7匹马行的总路程:54*7千米;

  每人骑马的路程:54*7/18=21千米;

  每人步行的路程:54-21=33千米。

推荐访问:小学数学 数学 说课稿 《数学列方程解应用题》小学数学说课稿3篇 《数学列方程解应用题》小学数学说课稿1 小学数学列方程解应用题教案

版权所有:袖书文档网 2002-2024 未经授权禁止复制或建立镜像[袖书文档网]所有资源完全免费共享

Powered by 袖书文档网 © All Rights Reserved.。备案号:鲁ICP备20026461号-1