小学奥数题及解析1 1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的? 可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证下面是小编为大家整理的2023小学奥数题及解析,菁选3篇,供大家参考。
小学奥数题及解析1
1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?
可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套.这时拿出1副同色的后4个抽屉中还剩3只手套.再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推.
把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套.这时拿出1副同色的后,4个抽屉中还剩下3只手套.根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的.以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)
答:最少要摸出9只手套,才能保证有3副同色的.
2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样?
答案为21
每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法.
当有11人时,能保证至少有2人取得完全一样:
当有21人时,才能保证到少有3人取得完全一样.
3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?
需要分情况讨论,因为无法确定其中黑球与白球的个数.
当黑球或白球其中没有大于或等于7个的,那么就是:
6*4+10+1=35(个)
如果黑球或白球其中有等于7个的,那么就是:
6*5+3+1=34(个)
如果黑球或白球其中有等于8个的,那么就是:
6*5+2+1=33
如果黑球或白球其中有等于9个的,那么就是:
6*5+1+1=32
4.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同?(如果能请说明具体操作,不能则要说明理由)
不可能.
因为总数为1+9+15+31=56
56/4=14
14是一个偶数
而原来1、9、15、31都是奇数,取出1个和放入3个也都是奇数,奇数加减若干次奇数后,结果一定还是奇数,不可能得到偶数(14个).
七.路程问题
1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它.问:狗再跑多远,马可以追上它?
根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米.
根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米.
可以得出马与狗的速度比是21x:20x=21:20
根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是30÷(21-20)×21=630米
2.甲乙辆车同时从ab两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求ab两地相距多少千米?
答案720千米.
由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份.又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米.所以算式是(40+40)÷(10-8)×(10+8)=720千米.
小学奥数题及解析2
三年级奥数题:和差倍数问题(一)
1、南京长江大桥共分两层,上层是公路桥,下层是铁路桥。铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米?
2、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。
3、甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克?
三年级奥数题:和差倍数问题(二)
1、在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3倍,那么差等于多少?
2、已知两个数的商是4,而这两个数的差是39,那么这两个数中较小的一个是多少?
3、姐姐做自然练习比妹妹做算术练习多用48分钟,比妹妹做英语练习多用42分钟,妹妹做算术、英语两门练习共用了44分钟,那么妹妹做英语练习用了多少分钟?
三年级奥数题:和差倍数问题(三)
1、已知△,○,□是三个不同的数,并且△+△+△=○+○,○+○+○+○=□+□+□,△+○+○+□=60,那么△+○+□等于多少?
2、用*象棋的车、马、炮分别表示不同的自然数。如果,车÷马=2,炮÷车=4,炮-马=56,那么“车+马+炮”等于多少?
3、聪聪用10元钱买了3支圆珠笔和7本练习本,剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,问一支圆珠笔的售价是多少元?
三年级奥数题:和差倍数问题(四)
1、甲、乙两位学生原计划每天自学的时间相同,若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学6天的时间仅相等于甲自学一天的时间。问:甲、乙原订每天自学的时间是多少分钟?
2、一大块金帝牌巧克力可以分成若干大小一样的"正方形小块。小明和小强各有一大块金帝巧克力,他们同时开始吃第一小块巧克力。小明每隔20分钟吃1小块,14时40分吃最后1小方块;小强每隔30分钟吃1小块,18时吃最后1小方块。那么他们开始吃第1小块的时间是几时几分?
三年级奥数题:速算与巧算
【试题】巧算与速算:41×49=( )
三年级奥数题:植树问题
【试题】一块三角形地,三边分别长156米,234米,186米,要在三边上植树,株距6米,三个角的顶点上各植上1棵数,共植树( )棵。
三年级奥数应用题解题技巧(一)
【试题】一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时?
三年级奥数应用题解题技巧(二)
【试题】纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。如果每天烧1000千克,可以多烧几天?
三年级奥数应用题解题技巧(三)
【试题】把7本相同的书摞起来,高42毫米。如果把28本这样的书摞起来,高多少毫米?(用不同的方法解答)
三年级奥数应用题解题技巧(四)
【试题】两个车间装配电视机。第一车间每天装配35台,第二车间每天装配37台。照这样计算,这两个车间15天一共可以装配电视机多少台?
三年级奥数应用题解题技巧(五)
【试题】同学们到车站义务劳动,3个同学擦12块玻璃。(补充不同的条件求问题,编成两道不同的两步计算应用题)。
补充1:“照这样计算,9个同学可以擦多少块玻璃?”
补充2:“照这样计算,要擦40块玻璃,需要几个同学?”
三年级奥数应用题解题技巧(六)
【试题】小华每分拍球25次,小英每分比小华少拍5次。照这样计算,小英5分拍多少次?小华要拍同样多次要用几分?
三年级奥数应用题解题技巧(七)
【试题】 刘老师搬一批书,每次搬15本,搬了12次,正好搬完这批书的一半。剩下的书每次搬20本,还要几次才能搬完?
小学奥数题及解析3
1.周长
一个锐角三角形的三条边的长度分别是两位数,而且是三个连续偶数,它们个位数字的和是7的倍数,这个三角形的周长最长应是多少厘米?
解答:86+88+90=264厘米
【小结】因为三角形三边是三个连续偶数,所以它们的个位数字只能是0,2,4,6,8,并且它们的和也是偶数,又因为它们的个位数字的和是7的倍数,所以只能是14,三角形三条边最大可能是86,88,90,那么周长最长为86+88+90=264厘米。
2.数论
把25拆成若干个正整数的和,使它们的积最大。
解答:积37×22=8748为最大。
【小结】先从较小数形开始实验,发现其规律:
把6拆成3+3,其积为3×3=9最大;
把7拆成3+2+2,其积为3×2×2=12最大;
把8拆成3+3+2,其积为3×3×2=18最大;
把9拆成3+3+3,其积为3×3×3=27最大;……
这就是说,要想分拆后的数的乘积最大,应尽可能多的出现3,而当某一自然数可表示为若干个3与1的和时,要取出一个3与1重合在一起再分拆成两个2之和,因此25可以拆成3+3+3+3+3+3+3+2+2,其积37×22=8748为最大。
3.抽屉问题
城市举行小学生数学竞赛,共20道题,有20分基础分,答对一题给3分,不答给1分,答错一题倒扣1分,若有1978人参加竞赛,问至少有人得分相同
【分析】20+3×20=80,20-1×20=0,所以若20道题全答对可得最高分80分,若全答错得最低分0分.由于每一道题都得奇数分或扣奇数分,20个奇数相加减所得结果为偶数,再加上20分基础分仍为偶数,所以每个人所得分值都为偶数.而0到80之间共41个偶数,所以一共有41种分值,即41个抽屉.1978÷41=48……10,所以至少有49人得分相同.
推荐访问:奥数 解析 小学 小学奥数题及解析 菁选3篇 小学奥数题及解析1 小学奥数题及解析100字 小学奥数题及解析100道 小学奥数题及解析