《假分数化成整数和带分数》听课教学反思1 小学阶段涉及到的分数计算中,最后结果不要求保留带分数,为了更好地培养学生的数感,帮助学生理解比1大的假分数的分数值究竟有多大,较容易地比较出假分数的大小,下面是小编为大家整理的2023年《假分数化成整数和带分数》听课教学反思3篇(全文完整),供大家参考。
《假分数化成整数和带分数》听课教学反思1
小学阶段涉及到的分数计算中,最后结果不要求保留带分数,为了更好地培养学生的数感,帮助学生理解比1大的假分数的分数值究竟有多大,较容易地比较出假分数的大小,所以,教材在编排时引入了带分数的相关知识。学生已经掌握了真分数和假分数的意义及特征,知道了分数与除法之间的关系,能够较熟练地将分数改写成除法算式。
本节课的教学重点是让学生能够熟练地将假分数化成整数或带分数,教学关键在于利用分数与除法的关系来完成化简过程。在教学本课知识时,苏老师很注意引导学生在自主探索的基础上进行交流,在交流中掌握把假分数化成整数或带分数的方法。
教学把假分数化成整数时,老师能关键把握两点:一是让学生先独立思考把假分数化成整数的方法,再让学生交流是怎样想的。有的学生根据分数与除法的关系,用分子除以分母把假分数化成整数;也有的学生借助画图进行思考,但用这个方法的同学并不多;还有的学生根据分数的意义推想,如已知5个1/5是1,10/5里有10个1/5,10是5的2倍,所以10/5=2。教学时重点让学生在理解的基础上,学会利用分数与除法的关系直接进行转化。二是组织学生观察能化成整数的假分数,让学生对能化成整数的假分数的特点有明晰的认识。提出问题:分子不是分母的倍数的假分数可以化成怎样的数呢?于是提出可以写成整数和真分数合成的数,就是带分数。借助数轴,帮助学生理解带分数是如何生成的。然后引导学生用分子除以分母的方法进行转化,引导学生明确除得的商是带分数的整数部分,余数是带分数的分子,而分母不变。整节课环环相扣,条理清楚,练习题有层次感,效果不错。
《假分数化成整数和带分数》听课教学反思2
这是一节由我校苏谊青老师执教的课,该教师一向教学基本功扎实,要求严格,是我们学习的榜样。
这是一节计算课,难点是把假分数化成带分数时,哪个数充当整数?哪个数充当分母?哪个数充当分子?其中学生最容易搞错的就是将分子、分母掉转。在教学的过程中,教师通过说理、示范、让学生说一说等,不厌其烦地引导学生进行思考、练习。教师设计的练习量充足且类型丰富,学生在整节课的学习中,从不懂到懂都是该教师手把手的"教学成果。
教师的教学设计由浅入深、环环相扣,使我受益非浅。以下是我在本节课中最欣赏的亮点:
1、板书设计形象具体、一目了然、有启发性。
2、教师的语言精辟、简练,有一针见血的功效。
3、练习精而活,让学生耳目一新。
4、能提问不同层次的学生,可以及时了解学生对知识点的掌握情况。
总的来说,苏老师的课上得十分好,是我们教学者学习的榜样,希望通过学习她的教学方式、方法使我们的教学水*能更上一层楼,使学生喜欢每一节数学课,期待上每一节数学课。
《假分数化成整数和带分数》听课教学反思3篇扩展阅读
《假分数化成整数和带分数》听课教学反思3篇(扩展1)
——《假分数化成整数或带分数》教学设计3篇
《假分数化成整数或带分数》教学设计1
教学目标:
1、知道带分数是假分数,是整数与真分数合成的数。2、会把假分数化成整数或带分数。
3、使学生经历假分数化成整数或分数的探索过程,进一步发展数感。4、培养良好的学习习惯,树立学好数学的信心。
教学重点:会把假分数化成整数或带分数。
教学难点:理解假分数化成整数或带分数的转化思路。
教学过程:
一、谈话导入:
最近我们一直在与数学王国中的一位朋友打交道,它就是分数。我们已经知道分数可以分成真分数和假分数,老师说几个分数你们来判断一下它是哪种分数?
谁还能举几个假分数的例子?(根据学生的回答有意识的板书成两类,同时选择1、2个分数让学生说说意义及其组成。)
二、探索建构。
(一)探索假分数化成整数的方法。
1、师问:你能把这些假分数化成整数吗?试着把你的想法与同桌交流一下。
2、学生汇报方法。(法一:根据分数与除法的关系;法二:根据假分数的意义。)根据学生的回答师适当板书思考过程,如果学生对于第二种方法想不到,教师应适当提醒或作简单说明,以便于进一步加强对分数意义的理解。
3、引导比较:将这些假分数化成整数,可以从假分数的意义这个角度去推算,也可以根据分数于除法的关系直接用分子除以分母,你比较喜欢哪种方法?为什么?
4、口答:将16/8、21/7、42/6转化成整数。
5、观察思考:这些能化成整数的假分数有什么特点?
6、师:你能不能也出几个能化成整数的假分数考考别人?
7、师问:谁能概括一下,刚才我们是怎样把这些假分数化成整数的?
(二)探索假分数化成带分数的方法。
1、师问:刚才举的假分数的例子中,还有这部分假分数能不能化成整数呢?为什么?那它们该化成怎样的数呢?(小黑板出示带分数的概念。)
2、师:这个概念看得懂吗?我们可以通过举例来说明。比如4/3可以写成1这个整数和1/3这个真分数合成的数,像这样的数就叫带分数,这个带分数读作一又三分之一。(师板书带分数的写法及读法,并组织学生齐读两遍。)
出示题目:读出下面带分数,并说说它的整数部分和分数部分。
621
3、师:4/3这个假分数和1这个带分数之间是什么关系呢?我们可以请数轴来帮忙解决。(出示数轴)请在数轴上找出4/3,1比1多还是少?又多出多少呢?(同样指名学生标出)这两个数我们在数轴上分别找到了它们的位置后,你有没有什么发现?
4、师小结:这两个数表示的是同一个点,说明它们的实质是一样的,只是表现形式不同罢了,可以这样说,带分数实际上只是分子不是分母倍数的假分数的另一种形式。
5、师问:你们想不想把其他的假分数也写成带分数的形式?就请动手试一试把11/4这个假分数化成带分数。(学生尝试着把一个假分数化成带分数。师巡视了解情况。)
6、交流方法。(共有三种方法。小黑板相机出示书上的两种解题思路,同时根据学生的回答适当进行板书。如果学生没有全部回答出三种思路,教师无需强求硬塞)
7、练习:让生继续试着把剩下来的假分数化成带分数。
8、师问:谁来概括一下,刚才是怎样把假分数转化成带分数的?
(归纳得出方法:分子除以分母,除得的商是带分数的整数部分,余数是带分数的分子,而分母不变。)
9、概括总结:观察前、后两组转化假分数的方法,它们有什么共同的地方?(揭题:假分数转化成整数或带分数)
三、巩固练习。
1、练习九2。让生独立完成,集体交流:说说为什么用这个假分数表示。
2、练习九4。出示题目。问:这里把多长看作单位“1”?指导填5/3、1。其余让生独立完成,集体交流。
3、练习九5。
出示题目:1=()/11=()/21=()/31=()/4
2=()/12=()/22=()/32=()/4
3=()/13=()/23=()/33=()/4
第一组指导学生完成,第二、三组让学生独立完成。
观察:这里几组等式都是把什么数转化成什么数?方法是怎样的?
(板书:整数——假分数)
4、完成练习九6。
四、课作:练习九1、3;每日一题。
《假分数化成整数或带分数》教学设计2
教学内容:
54页例3及做一做,练习十三第4~10题
教学目标:
1.知识与技能:理解带分数的意义,能正确地读写带分数。使学生掌握假分数化成整数或带分数的方法,能正确地把假分数化成整数或带分数。
2.过程与方法:经历把假分数化成整数或带分数的方法过程,培养学生独立解决问题的能力。
3.情感态度价值观:培养学生团结合作的意识,养成良好的学习习惯。
重点难点:
假分数化成整数或带分数。
教学准备:
课件
教学过程:
一、复习导入
1.判断下面各数哪些是真分数,哪些是假分数。
2.观察以上的假分数,假分数可以分为几类?
3.揭示课题:假分数又可以改写成怎样的数呢?这节课我们来学习把假分数化成整数或带分数。(板书:假分数化成整数或带分数)
二、新课讲授
1.教学带分数的意义及读写方法。
(1)一个同学在吃橙子时说我吃了一个半。怎样用分数表示?
得到:一个半是1+ 的和,也可以写成1 。板书:1
(2)观察1 ,它是由哪两部分组成的?
板书
(3)提问:什么是带分数?
(板书:由整数和真分数合成的数叫做带分数)
(4)带分数的读法。
1 读作:一又二分之一
1 读作:一又四分之三
小结:带分数都是由整数部分和分数部分组成的,带分数都比1大。
2.教学例3:出示题目
(1)把假分数化成整数。
如何化简: =33=1 =84=2
你是怎样得到这两个结果的?
(2)把假分数化成带分数。
提问: 的分子不是分母的倍数,这种情况怎样转化?
提问: 化成带分数,怎样化简?
(3)小结:假分数化成整数或带分数的方法是什么?
①分子是分母的倍数时,化成整数,用分子除以分母,商是整数。
②分子不是分母的倍数时,化成带分数,用分子除以分母,商是带分数的整数部分,余数部分是分数部分的分子,分母不变。
三、巩固练习
1.做一做第2题:独立计算,集体订正。
2.练习十三的第4~8题。
3.作业:练习十三9题,选作10题。
四、课堂小结
今天我们学习了什么,你又有什么收获?
板书设计:
把假分数化成整数和带分数
由整数和真分数合成的数叫做带分数
=33=1 =84=2
=65=1
《假分数化成整数或带分数》教学设计3
教学目标
1、理解并掌握把整数、带分数化成假分数的方法,能正确地把整数、带分数化成假分数。
2、通过这两节课的计算,让学生体验形式与实质的关系,进行初步的辩证唯物主义观点的教育。
教学重点、难点
重点、难点:正确地把整数、带分数化成假分数。
教具、学具准备
教学过程
一、复习铺垫
1、把下面假分数化成整数或带分数
3/351/516/47/716/3
9/521/7121/1170/716/1
2、在括号里填上适当的数
1=()/31=()/41=()/9
二、教学新知
1、教学例4。
把1化成分母分别是2、3、4、5的分数。
(1)读题、理解题意后失声共同分析
1个圆可以分成2个1/2、3个1/3、4个1/4、5个1/5。
也就是:1=2/21=3/31=4/41=5/5所以1=2/2=3/3=4/4=5/5
(2)口答1=()/()=()/()=()/()=......
:1可以化成分母是任意自然数的假分数。
同理:整数可以化成分母是任意自然数的假分数。
2、教学例5。
(1)出示例5,读题理解题意,弄清题目要求。(所化的假分数的分母为3,必须把单位“1”*均分成3份。)
(2)边观察分析填数
()/3()/3()/3()/3
1234
看直线图,填上适当的数(3/3、6/3、9/3、12/3)。说出这些分数的分数单位是多少?各有几个这样的分数单位?
从以上可以看出,1里面有3个1/3,2里面有(3×2)个1/3,那么4里面有()1/3。
2=3×2/3=6/34=3×4/3=12/3
(3)把2和4化成分母是5的假分数。
(4)观察以上整数化成假分数的式子归纳。
整数化成假分数,用指定的分母作分母,用()和()相乘的"积作分子。
2=3×2/3=6/3
指定分母
(5)练一练:
①口答:8=()/76=()/310=()/5
2=()/77=()/14=()/12=()/1
观察最后3题,任何自然数可以化成分母是1的假分数。
②课本P89第一题。
3、教学例6。
把2又3/4化为假分数。
(1)读题后,学生思考、试做。
(2)出示图例观察分析,验证。
2里面有(4×2)个1/4,在加上3个1/4,一共是(4×2+3)个1/4,就是11个1/4(11/4)
(3)2又3/4=4×2+3/4=11/4
看式子归纳:带分数化成假分数,用原来的分母作分母,用()和()相乘的积,在加上原来的()作分子。
(4)练一练:
①课本P89页第二题。
②课本P89页第三题。
三、练习反馈。
1、把各组数化成分母相同的假分数。
3又1/7和42又5/8和1
2、比较6和15/2的大小。
A、四人小组讨论,你用什么方法进行比较。
B、讨论后再练习。
C、反馈不同的方法。
D、归纳:两个数相比较,可以把它们同时化为假份数后进行比较,也可以化成整数、带份数进行比较。
3、比较下面各组数的大小
51/3和15/313/2、6和61/3
练习后反馈比较。
四、课堂作业
课本P89第4题(3)(4)第5题第二行。
五、课后作业《作业本》
在教学过程中,我结合图形,较直观地让学生理解整数、带分数化成假分数的算理,并最终归纳出方法。所以学生掌握得比较扎实,课堂上气氛活跃,发言积极。
《假分数化成整数和带分数》听课教学反思3篇(扩展2)
——《把假分数化成带分数》教学设计3篇
《把假分数化成带分数》教学设计1
教学要求:
①使学生理解带分数的意义,会读、会写带分数;能正确地把假分数化成带分数。
②培养学生总阅读数学材料的能力。
③渗透转化的数学思想。
教学重点:假分数化成带分数的方法。
一、创设情境
1.判断下面各数哪些是真分数,哪些是假分数?
2.观察以上假分数,根据分子能否被分母整除这一特征,假分数可以分成几类?
分子是分母倍数的分数--整数
板书:假分数
分子不是分母倍数的分数
3.分子是分母倍数的分数化成整数。
学生独立练习,集体订正。
二、揭示课题
像这样分子不是分母倍数的假分数又可以改写成怎样的数呢?这节课我们就来学习“把假分数化成带分数”。(板书课题)
三、探索研究
1、认识带分数的意义及读写方法。
(1)出示例2图③,向学生指出:这是我们昨天认识的假分数。从图上可以看到是由(就是2,教师把黑板上的圆片翻一面成2个整圆)和合成的数,可以写成2。2就是带分数。
(2)观察2,它是由哪两部分组成的?
2
板书:整数部分分数部分
(3)提问:什么是带分数?
板书:由整数和真分数合成的数叫做带分数。
(4)认识带分数的读法。
①2读作:二又五分之一。
②练习。读出下列各带分数。
1536
2.学习把假分数化成带分数的方法。
(1)自学例4,把和这两个假分数化成带分数。
(2)组织学生讨论。
①把和这两个假分数化成带分数的方法是什么?根据分数单位的个数怎样想?根据分数与除法的关系怎样化?
②根据分数与除法的关系改写的方法是什么?
归纳:把假分数化成带分数,用分母除分子,不能整除的,商就是带分数的整数部分,余数是分数部分的分子,分母不变。
(3)练一练:把复习题第1题中分子不是分母倍数的假分数化成带分数。
(4)引导学生总结把假分数化成整数或者带分数的方法,并让学生阅读课本第99页最后一段话。
四、课堂实践
1、教材第100页“做一做”。
2、练习二十一第4、6题。
3、用分数表示下面各题的商,能化成带分数的就化成带分数。
五、课堂小结
1、什么是带分数?带分数有什么特征?
2、带分数与假分数的关系是怎样的?
3、把假分数化成带分数或者整数的方法是什么?
六、课堂作业
练习二十一第5、7、8、9题。
《把假分数化成带分数》教学设计2
教学目标
1、使学生掌握把加分数化成整数或带分数的方法。
2、使学生在探索的过程中,进一步发展数感,培养观察、
分析、推理等思维能力。
教学重点:把加分数化成整数或带分数的方法。
教学难点:能利用分数与除法的关系直接进行转化。
教学准备;多媒体教学。
教学过程:
一、复习:
填空。
1=( )/1 1=( )/2 2=( )/3 3=( )/4
二、自主探究。
1、出示例7:把下面的假分数化成整数。
4/4 10/5 28/7
学生独立思考。
反馈:
指名学生回答,并说出自己的想法。根据学生的想法引导出假分数化成整数的方法:用分子除以分母把假分数化成整数;
借图进行分析;
根据分数的意义推想。
优化方法:学生阐述各种方法,引导学生利用分数与除法的关系直接进行转化。
2、出示例8:怎样把11/4化成带分数?
学生独立思考。师引导学生回忆假分数化成整数的方法。
反馈:指名学生回答,并说出自己的想法。分析假分数与带分数之间的关系。
三、巩固练习。
1、把12/3、30/6、8/5、8/3化成整数或带分数。
指名板演。
板演的学生说出各自转化的方法。
2、在 里填上“>”、“ <”或 “=”。
教科书P49页第6题。
四、课堂总结:把假分数化成整数或带分数的方法是什么?
《把假分数化成带分数》教学设计3
教学目标:
1、知道带分数是假分数,是整数与真分数合成的数。2、会把假分数化成整数或带分数。
3、使学生经历假分数化成整数或分数的探索过程,进一步发展数感。4、培养良好的学习习惯,树立学好数学的信心。
教学重点:会把假分数化成整数或带分数。
教学难点:理解假分数化成整数或带分数的转化思路。
教学过程:
一、谈话导入:
最近我们一直在与数学王国中的一位朋友打交道,它就是分数。我们已经知道分数可以分成真分数和假分数,老师说几个分数你们来判断一下它是哪种分数?
谁还能举几个假分数的例子?(根据学生的回答有意识的.板书成两类,同时选择1、2个分数让学生说说意义及其组成。)
二、探索建构。
(一)探索假分数化成整数的方法。
1、师问:你能把这些假分数化成整数吗?试着把你的想法与同桌交流一下。
2、学生汇报方法。(法一:根据分数与除法的关系;法二:根据假分数的意义。)根据学生的回答师适当板书思考过程,如果学生对于第二种方法想不到,教师应适当提醒或作简单说明,以便于进一步加强对分数意义的理解。
3、引导比较:将这些假分数化成整数,可以从假分数的意义这个角度去推算,也可以根据分数于除法的关系直接用分子除以分母,你比较喜欢哪种方法?为什么?
4、口答:将16/8、21/7、42/6转化成整数。
5、观察思考:这些能化成整数的假分数有什么特点?
6、师:你能不能也出几个能化成整数的假分数考考别人?
7、师问:谁能概括一下,刚才我们是怎样把这些假分数化成整数的?
(二)探索假分数化成带分数的方法。
1、师问:刚才举的假分数的例子中,还有这部分假分数能不能化成整数呢?为什么?那它们该化成怎样的数呢?(小黑板出示带分数的概念。)
2、师:这个概念看得懂吗?我们可以通过举例来说明。比如4/3可以写成1这个整数和1/3这个真分数合成的数,像这样的数就叫带分数,这个带分数读作一又三分之一。(师板书带分数的写法及读法,并组织学生齐读两遍。)
出示题目:读出下面带分数,并说说它的整数部分和分数部分。
621
3、师:4/3这个假分数和1这个带分数之间是什么关系呢?我们可以请数轴来帮忙解决。(出示数轴)请在数轴上找出4/3,1比1多还是少?又多出多少呢?(同样指名学生标出)这两个数我们在数轴上分别找到了它们的位置后,你有没有什么发现?
4、师小结:这两个数表示的是同一个点,说明它们的实质是一样的,只是表现形式不同罢了,可以这样说,带分数实际上只是分子不是分母倍数的假分数的另一种形式。
5、师问:你们想不想把其他的假分数也写成带分数的形式?就请动手试一试把11/4这个假分数化成带分数。(学生尝试着把一个假分数化成带分数。师巡视了解情况。)
6、交流方法。(共有三种方法。小黑板相机出示书上的两种解题思路,同时根据学生的回答适当进行板书。如果学生没有全部回答出三种思路,教师无需强求硬塞)
7、练习:让生继续试着把剩下来的假分数化成带分数。
8、师问:谁来概括一下,刚才是怎样把假分数转化成带分数的?
(归纳得出方法:分子除以分母,除得的商是带分数的整数部分,余数是带分数的分子,而分母不变。)
9、概括总结:观察前、后两组转化假分数的方法,它们有什么共同的地方?(揭题:假分数转化成整数或带分数)
三、巩固练习。
1、练习九2。让生独立完成,集体交流:说说为什么用这个假分数表示。
2、练习九4。出示题目。问:这里把多长看作单位“1”?指导填5/3、1。其余让生独立完成,集体交流。
3、练习九5。
出示题目:1=()/11=()/21=()/31=()/4
2=()/12=()/22=()/32=()/4
3=()/13=()/23=()/33=()/4
第一组指导学生完成,第二、三组让学生独立完成。
观察:这里几组等式都是把什么数转化成什么数?方法是怎样的?
(板书:整数——假分数)
4、完成练习九6。
四、课作:练习九1、3;每日一题。
课后反思:
在备课之初,我就将这堂课的难点确定为
理解分子不是分母倍数的假分数转化成带分数的算理。书上介绍了三种转化的方法,一种是画图理解、一种是推算理解、还有一种就是通过计算。根据以往的教学经验,计算(即通过一种方法的模仿)这一种方法学生掌握的效果最好,还有两种方法只有少数学生能想到,并且可能还是处在一种只可意会不可言传的程度,也就是心理明白是怎么一回事,但并不能叙述的很清楚。但如果只讲计算这种方法,而另两种方法不讲,对于学生而言可能就是纯碎的机械模仿,这就违背了教学原则,显然是不可行的。为此,在教学时,我先让学生试着把11/4转化成假分数,其间我通过巡视发现不少中上等学生已经通过计算将11/4转化成了假分数,接着我让这部分学生回答他们的转化方法,当学生们存在疑惑时,我适时将另两种思路在黑板上展示,这两种思路其实就是计算的算理说明,在学生们看过、想过后再来理解转化后的带分数每一部分的意思,在这样一种情况下难度就被分解了,学生既掌握了方法又理解了算理。
另外在这一堂课上,还有许多细节的处理不完善、不够到位,这些都是我以后在课堂教学中须努力改进的地方。
《假分数化成整数和带分数》听课教学反思3篇(扩展3)
——《真分数和假分数》课后教学反思3篇
《真分数和假分数》课后教学反思1
本节课要通过真分数,假分数的认识,使学生能全面理解分数的概念。所以教学中我紧紧扣住直观图形和直线上的点表示的分数,使学生从直观上清晰地认识到真分数小于1,假分数等于或大于1的特征,这样学生概括真、假分数的概念和特征即为水到渠成。在学生掌握了真分数、假分数概念后,再通过设问,让学生讨论出假分数化整数的方法及算理。
新课教学分两部分。
第一部分学习真分数,假分数概念。分三层。让学生通过观察、比较、讨论、认识分子和分母大小关系的三种情况,了解真分数,假分数概念;引导学生比较分数值与1的大小关系,认识真分数和假分数的特征;利用数轴进一步让学生认识真分数、假分数与1的关系,掌握它们的分界点是1。
第二部分学习把假分数化成整数的方法。分为两层。让学生通过观察认识到这些假分数的分子都是分母的倍数;理解和掌握假分数化整数的方法。
《真分数和假分数》课后教学反思2
本节课我采取合作探究与自主学习相结合的教学方式,重视学生对概念的建构和理解过程,其教学设计有以下几个特点:
一、多种教学策略和方法的融合,引导学生经历概念的建构过程。
富有实效的课堂教学,往往是多种教学策略的有机融合,本节课的教学中,主要凸显了以下几种教学策略:
1、关注学生知识起点,有效激疑。
孩子对于分数的了解并不是一无所知的,因此在课的伊始,从学生熟知的分数入手,并借助于这个可待定分数,不仅可以唤起学生对所熟悉的部分与整体关系的分数的回忆,同时又可类推出分子比分母大的分数,这种分数的出现,为下一环节的学习和探究创设了问题情境,引起了认知矛盾冲突,有效的激活了学生思维和学习兴趣。
2、把握教材设计意图,探究释疑。
纵观整个章节的编排体系,真分数、假分数内容教材的编排意图,除了让孩子们了解真分数与假分数的概念外,更重要的是让学生跳出前面在分数认识中形成的“分数表示部分与整体关系”这一思维,形成分数也表示两个量之间的份数关系,所以在让学生感知如何用圆中的阴影来表示时,根据学生已有的经验基础,通过充分的交流、讨论,有效的突破了单位“1”的限制,让学生明白分子比分母大的分数,其表示的具体量已超过了单位“1”,需要再增加这样的一份,借助于教师有效的引领,让学生明白了单位“1”的大小、*均分成的份数与分数有着密不可分的关系,再次强化了二者的重要性。之后,一个有效地设问,把谁看作单位“1”?充分估计到了学生认知上的误区,通过对比、观察、辨析,让学生深刻感悟到了同样的图形,单位“1”的不同,得出的分数竟存在如此大的差异,从而强调了单位“1”的重要性。至此,借助于一波又一波的矛盾冲突和问题情境,在无疑—有疑—释疑中深化了学生思维,加深了学生对假分数意义的理解和体验,增强了学生的思辨意识,有效的突破了难点。
二、重视数形结合,渗透数学思想方法。
教师注重了通过图形语言揭示概念的意义和特征。教学中,教师引导学生借助于圆形图和数轴,将“图”与真分数、假分数的特征相对照进行解释、分析和说理,使学生在观察和对比中感悟概念的意义和特征,体会数形结合在解决问题中的便捷性、科学性的优势。
三、练习设计注重坡度和梯度,有效提升了学生的思维水*。
本节课教师根据学生实际,设计了三个不同层次的练习。第一个层次,基础练习,主要是让学生巩固对真、假分数的认识。第二个层次,提高性练习,考虑到学生在数轴上描点是个难点,有意识的将它分解为几个层次,先是判断真、假分数,接着借助于对单位“1”的认识引入数轴,然后让学生猜测真、假分数在数轴上的位置,随后在老师的"引导下共同描点。这个题目囊括了本节课相关的所有知识点,将它们有机地联系在了一起,同时进行了有效提升和难点的突破。第三个层次,开放性练习,首先是让学生在繁杂的分数中按照一定的观察顺序发现规律,接着让学生接触不确定因素:(a≠0),a<6时,是真分数,a≥6时,是假分数。(a≠0),a>6时,是真分数,a≤6时,是假分数。(a≠0、b≠0),a>b时,是真分数,a≤b时,是假分数。为的就是将学生思维不断提升,从形象的呈现分数判断到学生形成抽象的符号化思想。整个练习的设计由易到难,由具体到抽象,层层递进,体现了循序渐进的原则,符合学生的认知规律。
总之,本节课的教学设计充分体现了学生的主体作用,为学生提供了合作交流、自主探究的学习环境,由表及里、由直观到抽象,加深了对真分数、假分数意义和特征的认识,建立了完整的分数概念。既有效地关注了过程性目标的达成,同时又将教师的“引”与学生的“学”有机的融合在一起,促进了学生的发展和对知识的建构。
《假分数化成整数和带分数》听课教学反思3篇(扩展4)
——分数乘整数教学反思10篇
分数乘整数教学反思1
一、利用已有知识引导学生实现正迁移。
《分数乘整数》是分数乘法单元的第一课时,本课主要让学生通过自主探索,了解分数与整数相乘的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数与整数相乘的计算方法。而分数与整数相乘的意义与整数相乘的意义相同,这节课在引入课题时,葛文娟老师设计了下面的两道习题:
(1)做一朵绸花要30厘米绸带,小丽做3朵这样的绸花,一共用多少厘米绸带?
(2)做一朵绸花要0.3米绸带,小红做3朵这样的绸花,一共用多少米绸带?
通过让学生列式并追问为什么都用乘法计算,激活学生已有的对整数乘法意义的认识。然后再通过改题呈现例1:做一朵绸花要米绸带,小芳做3朵这样的绸花,一共用几分之几米绸带?学生顺理成章地列出了例1的乘法算式,通过我追问这题为什么也用乘法计算?学生自然地将整数乘法的意义迁移到分数乘整数的意义中,实现了知识的"正迁移。
二、尊重学生的“数学现实”,加强算法的探究。
在学习本课之前,其实已经有许多学生大概知道了分数乘整数的计算方法,但对于为什么要这样算就不清楚了。如果再按照一般的教学程序(呈现问题——探讨研究——得出结论)进行教学,学生就会觉得“这些知识我早就知道了,没什么可学的了。”,从而失去探究的兴趣。教师的主导作用在于设计恰当的教学形式,调动不同层次的学生的学习兴趣。于是在教学时×3的算法时,小葛老师问:你知道怎么乘吗,你认为整数3与分数的什么相乘呢?重点让学生明白为什么要这样乘。抓住这一质疑点,提出:“为什么只把分子与整数相乘,分母不变”接下来的教学就引导学生带着“为什么”去探索。由质疑开始的探索是学生为满足自身需要而进行的主动探索,因此学生在课堂上迫不及待地,积极主动地进行讨论,从不同的角度解决疑问。
二、实现教学的个性化,发展学生的思维。
每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,葛老师放手让学生用自己思维方式进行自由的、多角度的思考,学生自主地构建知识,充分体现了“不同的人学习不同的数学”的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过计算分数单位的个数来理解;有的学生讲清了分母不能与整数相乘,只能将分子与整数相乘的道理;还有的学生将分数转换为小数,同样得到了正确的结果。由此我深深地体会到,包括教师在内的任何人,都不能要求学生按照我们*的或者教材编写者的意图去思考和解决问题,那些单一的、刻板的要求只会阻碍学生的思维发展。
分数乘整数教学反思2
这部分教材是在学生已学过整数乘法的意义和分数加法计算的基础上进行教学的。通过教学,我感触颇多:
一、引导自主探索,了解分数与整数相乘的意义。
1、导入新课时,引导学生涂色表示3个 米,目的是让学生认识到求3个 米可以用加法计算,也可以用乘法计算,再借助所列的加法算式初步理解分数与整数相乘的意义,并为引导学生探索分数与整数相乘的计算方法进行了知识结构上的铺垫。
2、通过交流与讨论,引导学生主动联系已有的知识经验进行分析、归纳和类推, ×3=?进一步发展学生合情推理能力,体验探索学习的乐趣。
二、加强过程体验,体会过程约分比结果约分更简便。
在解决例1的第(2)题时,我在处理算法多样化与算法优化时设计了88×8/11 =?的练习,让学生用两种方法计算,加强过程体验,学生通过亲身体验后,体会到过程约分比结果约分更简便且不易错,形成一种内在需求,优化算法。
存在不足:本课算理强调还不够,特别是练一练第1题,在学生独立完成后,我在组织交流时不够充分,只交流了学生的计算方法和结果,忽视了学生是如何涂出4个3/16的,后来我发现学生涂得方法很多,其实通过学生涂色写算式,可以沟通分数乘法和分数加法间的联系,进一步体会分数与整数相乘的意义,体会“求几个几分之几相加的和”可以用乘法计算的算理,我没有很好地把握教材这一练习设计的意图,没有敏锐地把握教学资源,很好地巩固算理。
分数乘整数教学反思3
一、尊重学生的“数学现实”。
在教学分数乘整数之前,其实班里已经有不少学生知道了分数乘整数的计算方法。如果再按照一般的教学程序进行教学,学生就会觉得“这些知识我早就知道了,没什么可学的了。”,从而失去探究的兴趣。于是在教学时,我提出:“为什么结果是9/10?为什么要把分子与整数相乘?”接下来的教学就引导学生带着“为什么”去探索。
二、实现教学学习的个性化。
每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,我放手让学生用自己思维方式进行自由的、多角度的思考,学生自主地构建知识,充分体现了“不同的人学习不同的数学”的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过在老师给的练习纸上涂色来得到结果;有的学生讲清了为什么将分子与整数相乘的道理;还有的学生将分数转换为小数,同样得到了正确的结果。由此我深深地体会到,包括教师在内的任何人,都不能要求学生按照我们*的或者教材编写者的意图去思考和解决问题,那些单一的、刻板的要求只会阻碍学生的思维发展。
三、对教材进行重组。
本节课时一节枯燥乏味的计算课,因此我利用乌龟和兔子进行智力比赛的方式来刺激学生求知解题的欲望,让孩子们在充满竞争和挑战的环境氛围下,不知不觉地完成书本上的基本练习。当然我也对教材的联系题目进行了重组和改编。如练一练第一题,我就把4个改成了3个,这样就使得这题避免约分,先解决不用约分的计算方法,再进行约分的教学。使整节课自然分成两部分来进行。
四、存在的一些问题。
本节课总体来说比较成功,课堂上的内容都比较顺利的完成了,但是在让学生体会先约分比较简单时,出现了些问题。在做完例题第二个问题之后,依然有不少学生依然觉得先计算好,于是我就出示了四道题目,其中最后一题数据较大,可以很好的引导学生得出正确的结论。但我现在觉得,如果在例题教学完之后就直接完成那个8/11×99,这样就更加直接了,学生立刻就能体会到先约分的好处了,那么再做其它需要进行约分的题目就方便了。
分数乘整数教学反思4
一、引导自主探索,了解分数与整数相乘的意义。
1、导入新课时,引导学生涂色表示3个米,目的是让学生认识到求3个米可以用加法计算,也可以用乘法计算,再借助所列的加法算式初步理解分数与整数相乘的意义,并为引导学生探索分数与整数相乘的计算方法进行了知识结构上的铺垫。
2、通过交流与讨论,引导学生主动联系已有的知识经验进行分析、归纳和类推,进一步发展学生合情推理能力,体验探索学习的乐趣。
二、加强过程体验,体会过程约分比结果约分更简便。
在解决例1的第(2)题时,我在处理算法多样化与算法优化时设计了88×8/11=?的练习,让学生用两种方法计算,加强过程体验,学生通过亲身体验后,体会到过程约分比结果约分更简便且不易错,形成一种内在需求,优化算法。
存在不足:
本课算理强调还不够,特别是练一练第1题,在学生独立完成后,我在组织交流时不够充分,只交流了学生的计算方法和结果,忽视了学生是如何涂出4个3/16的,后来我发现学生涂得方法很多,其实通过学生涂色写算式,可以沟通分数乘法和分数加法间的`联系,进一步体会分数与整数相乘的意义,体会“求几个几分之几相加的和”可以用乘法计算的算理,我没有很好地把握教材这一练习设计的意图,没有敏锐地把握教学资源,很好地巩固算理。
分数乘整数教学反思5
分数乘整数是“分数乘法”教学的第一课时,是学生理解分数乘法意义的起点。这部分教材是在学生已学的整数乘法的意义和分数加法计算的基础上进行教学的。
在教学中,我充分利用学生已有的知识经验,努力结合现实的问题情境,将计算学习与解决问题有机结合,放手让学生自主探究分数乘法的意义。创设学生喜欢的实际情境,让学生根据实际问题的数量关系,列出算式。学生很容易结合整数乘法的意义,列出乘法算式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算。
在教学分数和整数相乘的计算法则时,我指导学生从读一读,说一说,练一练,想一想,议一议五个方面入手,例如:教学3/10×5,首先让学生明确,要求3/10×5,也就是求3/10+3/10﹢3/10+3/10+3/10是多少,并联系同分母分数加法的计算得出3+3+3+3+3/10,然后让学生分析分子部分5个3连加就是35,并算出结果,在此基础上,引导学生观察计算过程,特别是3/10×5与35/10之间的联系,从而理解为什么“同分子和整数相乘的积作分子,分母不变”。接着让学生自己尝试练一练7/10×5,然后进行集体交流,看一看能不能在相乘之前的那一步先约分,比一比在什么时候约分计算可以简便一些,从而明白为了简便,能约分的`先约分。
总之,本节课我能尽量调动学生的多种感官,改变以例题、示范、讲解为主的教学方式,改变以记忆法则、机械训练为主的学习方式,引导学生投入到探索与交流的学习活动之中,让学生变被动为主动,参与到算理的探讨、运算规律的归纳中来。
分数乘整数教学反思6
分数乘整数的知识基础在于同分母分数加法的计算方法及分数的意义及整数乘法的意义等知识。在课堂的开始环节,我对这些内容进行了一定的复习,再进入分数乘整数的教学。
分数乘整数的算法很简单,在相乘时,分母不变,只把整数和分数的分子相乘作分子。在教学这个内容时,我关注到新教材在算理方面的重视,注意到图形和算式之间的联系,在计算前充分让学生感知画、涂图形的过程。因此,在后面计算方法的得出就水到渠成,比较容易了。再者,对“分数乘整数表示的意义”也有机的渗透,为后面的知识打好铺垫。
一堂课上下来,由于学生对内容比较容易接受,课堂上有了空余时间。学生对算理的理解比较清晰,但还存在的问题就是约分的环节,有些学生喜欢算出结果以后再约分,对计算过程约分还不愿意采用,教学反思《分数乘整数教学反思》。这一环节还应讲深讲透。学生可能对于这种在计算过程当中的约分,还是一知半解,对这样约分的道理理解得不够清楚。学习分数乘整数,学生在计算时肯定会遇到先约分后乘还是先乘后约分的问题。如果仅仅是为得到一个正确的结果,那么无论前者,还是后者,都无关紧要,只要不出差错,最后都能得到正确结果。显然,我们还需要学生养成良好的计算习惯,较高的计算速度和计算正确率!那么我们就必须让学生明白到底哪种思路更合理,更有助于自己的后续学习。作为分数乘法的第一节课——分数乘整数,形成先约分后计算的良好计算习惯,对于提高学生计算的正确率和计算速度,有着很重要的作用。在教学分数乘法在过程中约分时,我给学生练习的题目是: ×5,并且列出两种做法让学生进行比较。但我觉得这道题并不能体现在计算过程中先约分的优越性。应该将题目改得稍复杂些,变成“13× 5/26”,并且和同学们一起比赛谁做得快。如果哪位学生是用整数直接乘以分子的,速度当然会很慢,当做得最快的同学展示自己的做法时,其他同学恍然大悟,深刻体会到计算过程中先约分,可以化繁为简。这样,学生在做分数乘法时,不仅仅满足于“分子和整数相乘的积作分子,分母不变”,而是记住“能约分的要约分”这一要点。
分数乘整数教学反思7
分数乘整数是“分数乘法”教学的第一课时,是学生理解分数乘法意义的起点。这部分教材是在学生已学的整数乘法的意义和分数加法计算的基础上进行教学的。
在教学中,我充分利用学生已有的知识经验,努力结合现实的问题情境,将计算学习与解决问题有机结合,放手让学生自主探究分数乘法的意义。创设学生喜欢的实际情境,让学生根据实际问题的数量关系,列出算式。学生很容易结合整数乘法的意义,列出乘法算式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算。
在教学分数和整数相乘的计算法则时,我指导学生从读一读,说一说,练一练,想一想,议一议五个方面入手,例如:教学3/10×5,首先让学生明确,要求3/10×5,也就是求3/10+3/10﹢3/10+3/10+3/10是多少,并联系同分母分数加法的计算得出3+3+3+3+3/10,然后让学生分析分子部分5个3连加就是35,并算出结果,在此基础上,引导学生观察计算过程,特别是3/10×5与35/10之间的联系,从而理解为什么“同分子和整数相乘的积作分子,分母不变”。接着让学生自己尝试练一练7/10×5,然后进行集体交流,看一看能不能在相乘之前的那一步先约分,比一比在什么时候约分计算可以简便一些,从而明白为了简便,能约分的先约分。
总之,本节课我能尽量调动学生的多种感官,改变以例题、示范、讲解为主的教学方式,改变以记忆法则、机械训练为主的.学习方式,引导学生投入到探索与交流的学习活动之中,让学生变被动为主动,参与到算理的探讨、运算规律的归纳中来。
分数乘整数教学反思8
在教学分数乘整数之前,班里已经有不少学生知道了分数乘整数的计算方法。如果按照一般的教学程序进行教学,学生就会觉得“这些知识我早就知道了,没什么可学的了。”,从而失去学习的兴趣。于是在教学时,我提出:“为什么结果是9/10?为什么要把分子与整数相乘?”接下来的教学就引导学生带着“为什么”去学习。
每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,我放手让学生用自己思维方式进行多角度的思考,学生自主地构建知识,充分体现了“不同的人学习不同的数学”的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过在老师给的练习纸上涂色来得到结果;有的学生讲清了为什么将分子与整数相乘的道理;还有的学生将分数转换为小数,同样得到了结果。
存在的一些问题。
让学生体会先约分比较简单时,出现了些问题。在做完例题第二个问题之后,依然有不少学生依然觉得先计算好,于是我就出示了四道题,其中最后一题数据较大,可以很好的引导学生得出正确的结论。但我现在觉得,如果在例题教学完之后就直接完成那个8/11×99,这样就更加直接了,学生立刻就能体会到先约分的好处了,那么再做其它需要进行约分的题目就方便了。
分数乘整数教学反思9
一、利用已有知识引导学生实现正迁移。
《分数乘整数》是分数乘法单元的第一课时,本课主要让学生通过自主探索,了解分数与整数相乘的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数与整数相乘的计算方法。而分数与整数相乘的意义与整数相乘的意义相同,这节课在引入课题时,葛文娟老师设计了下面的两道习题:(1)做一朵绸花要30厘米绸带,小丽做3朵这样的绸花,一共用多少厘米绸带?(2)做一朵绸花要0.3米绸带,小红做3朵这样的绸花,一共用多少米绸带?通过让学生列式并追问为什么都用乘法计算,激活学生已有的对整数乘法意义的认识。然后再通过改题呈现例1:做一朵绸花要 米绸带,小芳做3朵这样的绸花,一共用几分之几米绸带?学生顺理成章地列出了例1的乘法算式,通过我追问这题为什么也用乘法计算?学生自然地将整数乘法的意义迁移到分数乘整数的意义中,实现了知识的正迁移。
二、尊重学生的“数学现实”,加强算法的探究。
在学习本课之前,其实已经有许多学生大概知道了分数乘整数的计算方法,但对于为什么要这样算就不清楚了。如果再按照一般的教学程序(呈现问题——探讨研究——得出结论)进行教学,学生就会觉得“这些知识我早就知道了,没什么可学的了。”,从而失去探究的兴趣。教师的主导作用在于设计恰当的教学形式,调动不同层次的学生的学习兴趣。于是在教学时 ×3的算法时,小葛老师问:你知道怎么乘吗,你认为整数3与分数的什么相乘呢?重点让学生明白为什么要这样乘。抓住这一质疑点,提出:“为什么只把分子与整数相乘,分母不变”接下来的教学就引导学生带着“为什么”去探索。由质疑开始的探索是学生为满足自身需要而进行的主动探索,因此学生在课堂上迫不及待地,积极主动地进行讨论,从不同的角度解决疑问。
二、实现教学的个性化,发展学生的思维。
每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,葛老师放手让学生用自己思维方式进行自由的、多角度的思考,学生自主地构建知识,充分体现了“不同的人学习不同的数学”的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过计算分数单位的个数来理解;有的学生讲清了分母不能与整数相乘,只能将分子与整数相乘的道理;还有的学生将分数转换为小数,同样得到了正确的结果。由此我深深地体会到,包括教师在内的任何人,都不能要求学生按照我们成
分数乘整数教学反思10
在教学分数乘整数之前,班里已经有不少学生知道了分数乘整数的计算方法。如果按照一般的教学程序进行教学,学生就会觉得“这些知识我早就知道了,没什么可学的了。”,从而失去学习的兴趣。于是在教学时,我提出:“为什么结果是9/10?为什么要把分子与整数相乘?”接下来的教学就引导学生带着“为什么”去学习。
每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,我放手让学生用自己思维方式进行多角度的思考,学生自主地构建知识,充分体现了“不同的人学习不同的数学”的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过在老师给的练习纸上涂色来得到结果;有的学生讲清了为什么将分子与整数相乘的"道理;还有的学生将分数转换为小数,同样得到了结果。
存在的一些问题。
让学生体会先约分比较简单时,出现了些问题。在做完例题第二个问题之后,依然有不少学生依然觉得先计算好,于是我就出示了四道题,其中最后一题数据较大,可以很好的引导学生得出正确的结论。但我现在觉得,如果在例题教学完之后就直接完成那个8/11×99,这样就更加直接了,学生立刻就能体会到先约分的好处了,那么再做其它需要进行约分的题目就方便了。
《假分数化成整数和带分数》听课教学反思3篇(扩展5)
——分数除以整数教学设计10篇
分数除以整数教学设计1
教学目标:
1、在教师的鼓励引导下,学生积极地调动已有的知识经验,主动探求整数除以分数的计算方法。
2、通过师生的分析与交流,学生能较快地理解整数除以分数的算理,尝试自己归纳计算法则,初步掌握整数除以分数的计算法则,能正确地进行有关的分数除法计算,并解决生活中一些简单问题。
3、结合具体情境学生进一步体会估算在生活中的广泛应用,增强数学应用意识,感受分数除法与生活的密切联系。
教学准备:
多媒体课件、小黑板。
教学过程:
从生活中引入计算也可以如此有趣!
1、 初步感悟: 知道今天是什么日子吗?(生齐声:中秋节!)对,中秋节!在这样特殊的日子里,能和六1班的同学一起学习一定是段令人难忘的经历。据我所知,昨天和今天来自南京市各个区的多位数学老师到咱们学校借班上课,我只是其中的一个。请大家猜一猜,这两天共有多少老师来上课?
(学生议论纷纷;师:多了,少了,差不多了)
这样吧,老师提供一条信息:我来自秦淮区第一中心小学,众多老师中只有我一人是咱们区的老师,占这次上课教师人数的。这下能知道共有多少位老师到你们学校上课吗? (学生们迅速回答出有14位老师。)
2、 创设情境:前面提到中秋节,这可是我们*人很重要的一个传统节日,你知道中秋节有哪些风俗?(生:吃月饼;晚上合家吃团圆饭;赏月;吃石榴)其实现在生活条件这么好,大家并不在意晚上那顿丰盛的晚餐,每逢佳节倍思亲,是浓浓的亲情牵挂着人们的心,对吗?那首歌唱得多好呀:常回家看看,回家看看这不,陈宇的爸爸也匆匆往家赶请看屏幕。
出示例题:陈宇的爸爸在郊区工作,中秋节要回家与亲人团聚,他从单位骑摩托车到家要1小时,骑了18千米时发现用了小时,爸爸每小时行多少千米?
反思与探索
学生们是简单而纯洁的,他们总是睁大一双明亮的眼睛去观察身边的一切,用一颗真诚无暇的心作出判断和选择:过于理性、抽象、过于繁难或简单、脱离生活的数学课都会令其产生畏惧、厌烦的心理。虽然他们已经习惯于面对经过人为加工的纯数学问题,习惯于把自己熟悉的方法或公式复制到模型中就能解决问题。但常此以往,必然会降低学生从实际生活中收集、组合信息形成数学问题的能力,更可怕的是他们会逐渐拉开与数学的距离。其实数学和生活的关系是这样的密切,关注学生的生活,了解他们的学习基础和生活经验,创设贴近生活的情境,激发探究的欲望,枯燥的计算也能变得如此有趣!学生从中感受到的不仅是生动活泼的教学气氛,还有教师对他们的一份尊重与信任!
良好的开端是成功的一半。课开头设计的猜一猜环节一下子就激起了学生的兴趣。在学生七嘴八舌之后,教师却并不急于揭示答案,而是不紧不慢地提供一条信息,我一人,占这次上课教师人数的,这样的设计是建立在学生已有的知识基础上的,学生可以用整数方法解答,同时这一个也让学生在解决问题的过程中初步感悟分数除法的算理,为下面进一步学习分数除法埋下伏笔。而利用中秋节巧妙引入例题,既合情合理又自然有趣,原来数学就在自己的身边!学生的探究就从这里开始了
※ 在经历中体验这样的探究很有意思!
1、 捕捉信息:看了题目,你从中得到了哪些信息?有什么发现?
2、 引导估算:(在师生合作完成线段图后)出示完整的线段图
提问:这个线段图你们能看懂吗?能看图,估计一下1小时行多少千米?
怎么能看出来?说出你的想法。
1小时行?千米
小时行?千米
小时行18千米
(思考片刻后有生回答:从图中能看出,全长是18千米的三倍多一点,估计爸爸1小时大约行五、六十千米。)
3、 探求算法: 这只是估计,究竟每小时行多少千米?你打算怎么计算?用什么方法?选择你喜欢的方法具体算一算,算过后可以和小组中其他同学交流一下。(学生尝试用不同的方法解答,教师巡视。)
4、 交流分析:
1、学生代表汇报结果,有以下几种算法:
a、18310 = 60(千米) 先求1份即小时行的,再求10份;
b、180.3 = 60(千米) 把小时化成小数0.3小时;
c、18(103)= 60(千米)先求总长是已经行的路程的几倍;
d、18=18=60(千米)
利用数量关系速度=路程时间,直接乘除数的倒数。
2、让学生充分阐释前几种算法的算理。
3、教师重点引导方法d的证明与理解。
指出:同学们阐述了用整数、小数、分数乘法解答的理由,非常不错。
而这是一道分数除法算式, 18 =18=60(千米)
你是又根据什么来列式的? (板书:速度=路程时间)
与昨天学习的知识相比,有什么不同?整数除以分数(板书课题)
追问:你怎么想到用这种方法计算的?这样做的理由是什么?为什么可以转化成乘法来做?
A利用线段图说明算理:
学生先看图说说自己的理解。(从图上看, 1小时是小时的三倍多一些,1小时行路程的也是18千米的三倍多一些,具体说是倍。)接着出示:线段图(屏显:三个18千米闪动。)
1小时行?千米
小时行?千米
18千米 18千米 18千米
B用其他方法验证算理:
谁能用其他方法验证?用方法a、18310 和方法c、18(103)说明。
师随即板书思路18310=1810=18=60(千米)
18(103) = 18=60(千米)
5、 对比说明:同学们想出不同的方法来解决同一个问题,尽管大家思考的角度不同,但有一点是相同的都是积极地把新知识转化成已经学过的知识来解决,这一点老师非常欣赏,实际上这也是在数学学习中解决问题的一个重要思路。
那么在这些计算方法中,你觉得哪一种算法比较好?,谁能证明自己的方法更简便,说出其它算法的不简便?(学生回答时教师必须注意设置矛盾)
6、 归纳算法:想一想,整数除以分数在计算时转化成什么样的计算?你们能归纳一下吗?
反思与探索
在学习数的运算的过程中,我们的课堂除了要为学生营造一种
生动活泼的教学气氛外,更重要的是应充分尊重学生的思想、情感、意志和行为方式,使学生形成探究创新的心理愿望和性格特征。让他们可以在自由的时空里主动地探索,大胆地发现,自信地表达,快乐地运用!
掌握整数除以分数的算法是这节课的重点,但计算方法的得出决不应是教师塞给学生的,学生对算理的认识也不应是机械的,一切必须建立在放手让学生经历自主探索的过程上。会计算并不难,能理解为什么要这么算才是难点。教师充分尊重每个学生的选择,重视每个学生的表达,爸爸1小时行?千米学生面对这个具体的问题选择了不同的算法,他们有各自的理解和解释。教师用心倾听,及时板书,积极鼓励,适时引导:你们用不同的方法得到了同一个答案,都是积极地把新知识转化成已经学过的知识来解决,这一点老师非常欣赏!究竟每种解法代表什么思路,哪种方法更合适?18 =18=60(千米)又有其他解法不具备的哪些优点? 学生在探索实际问题的过程中,经历估计、求解、比较、分析、交流、验证、归纳几个环节,从而心服口服地接受了分数除法计算方法的正确性与合理性。
在应用中提升我们喜欢做这样的练习!
(在完成两组基本练习题之后,教师出示了下面的一组题,学生表现出浓厚的兴趣,积极思考,踊跃回答。)
你能用分数除法的知识解决下面的问题吗(先估一估,再算一算。)
(1)妈妈想为中秋节的晚餐添一道菜螃蟹,她在农贸市场选中的一种螃蟹,用90元可以买千克,妈妈带了120元,够不够买1千克?
(学生们估算后又通过计算得出120元不够买1千克。但很快就有学生说:老师,妈妈可以只买120元的螃蟹呀;还有学生说:妈妈可以还价说不定就够买1千克呢!)
(2)为迎接20xx年十运会,张伯伯所在的工艺品厂赶制一批纪念品,张伯伯用小时做了20件,想想他1小时能做完30件吗?
(3)国庆长假期间陈晨要去看望爷爷奶奶,一家三口开汽车从家
出发,小时行驶了50千米,已知陈晨家到爷爷家有100千
米的距离,他们1小时能到达吗?
(有学生这么估算:1小时的就是1小时的一大半时间行了50千米,剩下的时间肯定行不完另一个50千米的。接着有人反驳:如果剩下的时候里他们加速,也许1小时就可以到达爷爷家。又有人补充:那可要注意安全呀!)
反思与探索
学习数学,不能仅仅停留在掌握知识的层面上,必须学会思考和应用。我们的数学课要着力培养学生的应用意识。让学生能认识到现实生活中蕴涵着大量的数学信息,面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。 在拓展练习中提升对知识的认识,主动寻求知识的应用领域,才能开辟更为广阔的空间!所以看着学生们主动而开心地用他们所学的知识轻松去解决身边的问题,感觉真的很欣慰。
分数除以整数教学设计2
教学目标:
通过自主探究、合作交流,理解整数除以分数的计算方法。
能正确计算整数除以分数,并能解决简单的数学问题。
学生在学习活动中能进行观察、抽象、猜想、验证等数学活动,获得良好的学习情感。
教学过程:
一、引入课题。
1.同学你,喜欢动物吗这节课我们就通过数学来了解几种动物的情况。古代有一种动物被称作人们的邮递员,知道它是谁吗鸽子每小时可飞多少千米呢
2.有这样一组信息:
出示:一只鸽子小时飞行12千米。1小时行多少千米
你会用线段图表示条件吗
求鸽子1小时飞行多少千米,算式怎么列
这是整数除以分数(板书课题)
二、探究新知。
1、12÷怎样计算呢你能否根据线段图发现不同的解法呢
学生可能有以下三种方法:
① 12÷=12÷0.2
这是转化成整数除以小数进行计算。
② 12×5
为什么乘5能在图中解释一下吗
③ 12÷=60
2、12÷的结果是多少你是怎么想的
学生可能会有:
①12÷和12×5都是求鸽子1小时飞行的路程,应该相等。
②12÷等于乘的倒数。
提问:你怎么想到的
从一个例子推想出来的结论,是否适用于所有的例子呢这时可称之为猜想。想证明猜想是正确的,你认为应该怎么办
3、出示下面两题,请学生解答并说出思考过程。
1.蜜蜂
2.猫
这两题的计算过程符合刚才的猜想吗能否说明猜想适用于所有整数除以分数的情况呢
4、出示:
一只蝴蝶小时可飞行( )千米,1小时可飞行多少千米
你想知道四分之几小时飞行的千米数为什么
补充小时可飞行24千米。
算式怎么列怎样计算呢先独立思考,然后小组讨论。
学生可能有:
24×,24×3÷4,24××4,24÷3+24,24÷0.75
如果24×是正确的,结果应是相同的,验证一下。
这些算式之间有没有内在的联系呢能否转化成24×呢
教师引导完成:
5、猜想正确吗用不同的事例来证明猜想是非常了不起的办法,老师告诉你们,猜想是对的。在中学的学习中,同学们还会学习如何证明猜想。
(若有化成除以小数的,提问:两种计算方法,哪种更好)
计算整数除以分数,哪种方法最方便
三、巩固练习
①4÷2/3=4×( ) 2÷1/5=2×( )
②p35.练一练1
③计算8÷2/3 10÷15/16
四、解决问题
苍蝇小时可飞4千米
蝙蝠小时可飞4千米
游戏 a÷2/3÷3/4
机动:
榨油机2/5小时榨油360千克,1小时榨油多少千克 ?
有3升西瓜汁,倒入能装1/5升的杯子里,可以倒几杯 ?
分数除以整数教学设计3
教学目标:
1、使学生理解一个数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。
2、使学生在探索整数除以分数、分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。
3、培养学生迁移、概括的能力。
教学重点:
掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算。
教学难点:
理解分数除法的意义,体会数学知识之间的内在联系。
教学准备:
展台。
教学过程:
一、创设情境,激趣导入。
谈话:同学们,你们喜欢布艺手工劳动吗,会做什么呀?看我们布艺小组同学做的书信袋,既环保又实用,多么有创意。
展台出示信息窗2的第一幅图:兴趣小组的同学用2米布做书信袋。一个小书信袋需要1/5米,一个大书信袋需要2/5米。 设计意图:本节课以发生在学生身边的生活事例“布衣兴趣活动”为素材,创设了布衣兴趣小组“做书信袋和小裙子”这一情境。
二、自主探索,获取新知。
1、说说你了解到的信息,能提出什么问题?学生找出信息,提出问题。
设计意图:教学时,教师充分利用信息窗,引导学生理清图中所包含的各种信息,让学生思考由这些信息,你能提出什么问题?这样从学生的身边发生的事件作为起点创设问题情境,极大地激发学生的求知欲,促使学生积极主动地参与学习。
2、红点问题一:2米布可以做多少个小书信袋?引导学生自己观察。
师:要求2米布可以做多少个小书信袋,就是求2米里面有多少个1/5米。怎样列算式?
师:这个算式表示的意义就是:2里面有几个1/5。
设计意图:注重给学生提供积极思维,自主探索的空间,有利于培养学生的创新精神和实践能力。
3、整数除以分数的计算方法。
小组讨论,如何计算呢?引导学生用线段图帮助理解。师展示分析过程。“1”里面有5个1/5,2里面就有(2×5)个。也就是10个1/5。也就是2÷1/5=2×5=10(个)。所以结果等于10。
师:那么,5和1/5有什么关系呢?
设计意图:让学生独立解决并画图理解算理,再在小组里共同分析、讨论,解释计算方法。由于学习是开放性的,学生自由探索知识的形成过程,可能会出现多种推导的方法,这时老师可补充肯定各种不同的推导方法,重点借助直观图,利用学生的知识基础,交流讲解,最后引导学生发现计算方法,这一环节,尊重每一个学生的个性特征,允许不同的学生从不同的角度认识问题,采用不同的方式表达自己的想法,用不同的知识与技能解决问题,体现了“人人学有价值的数学”这一教学理念。
4、红点问题二:2米布能做几个大书信袋?小组讨论交流,得出结果。 2÷2/5=2×5/2=5(个)
从而我们也可以得出:2除以2/5也就是2乘2/5的倒数。
5、绿点问题。
让学生独立解决,集体交流算式的意义和算法。
小组讨论,归纳总结:一个数除以分数,等于这个数乘分数的倒数。
设计意图:这一步骤是分数除以分数的意义和计算方法的教学,可放手让学生独立解决,最后小组讨论,归纳整数除以分数算式的意义和算法。由于前两个例题的教学,学生很容易得出分数除以分数等于分数乘后一个分数的倒数。知识的获得是在学生已有知识的基础上,通过旧知识的学习感悟得到的,这样教学有利于学生迁移,类推能力的培养。
三、自主练习。
1、自主练习第1题。
练习时,要培养学生认真仔细的学习习惯。教师可适当补充类似的练习,以逐步提高学生的计算水*。
2、自主练习第2题。
让学生独立做在练习本上,然后集体订正。练习时,要让学生解答完第1小题后,讨论数量关系,在明确“燃烧总量除以时间等于每小时的燃烧量”的基础上,再来解答第2小题。这样便于学生通过练习,全面巩固知识。
四、全课小结。
1、今天我们学习了什么新知识?
2、一个数除以分数的计算法则是什么?
3、计算一个数除以分数应注意什么?
分数除以整数教学设计4
学习目标:
1.初步理解分数乘法与除法之间的联系
2.在探究中发现,理解分数除以整数的计算方法
教学重点:
理解分数除法的意义,掌握分数除以整数的计算方法
教学难点:
掌握分数除以整数的算理
教学设计:
一.创设情景导入
前几天老师在商场买了3包饼干,每包重100克,你们能提出一些问题吗?…3包饼干一共重多少克?100?3=300(克)根据它改编成2道整数除法算式及问题300÷3=100(克)300÷100=3(包)
小结:除法就是已知两个因数的积与其中一个因数,求另一个因数的运算
二.引入新课
如果把整数改成分数,上面的题又该怎样计算?100×3=3/10(千克)3/10÷3=1/10(千克)3/10÷1/10=3(包)
通过对比,它们都是已知两个因数的积与其中一个因数,求另一个因数,分数除法的意义与整数除法相同,都是乘法的逆运算。
改写两道除法算式:12×1/2 15×1/3
三.出示学习目标:
1.初步理解分数乘法与除法之间的联系
2.在探究中发现,理解分数除以整数的计算方法
四.自主学习,合作探究
现在老师手中有4/5升的果汁,现在要把这杯果汁*均分成2份,每份是多少升?画一画,算一算学生展示计算成果:4/5÷2=4÷2/5=2/5(升)4/5÷2=4/5×1/2=2/5(升)
通过比较算式,你能发现什么规律?
分数除以整数(0除外),可以用分子除以这个整数,分母不变。也可以乘以这个数的倒数。
如果把果汁*分成3份,又该怎样计算?让学生通过比较发现:第二种方法简单通用。
五.质疑再探
你还有什么不明白的地方吗?共同探讨六.课堂检测
练习:用你发现的规律计算下面各题。 4/5÷3=
2/9÷2=
1/3÷4=
小结:通过这节课的学习,你有什么收获?分数除以整数的计算方法是怎样的?
分数除以整数教学设计5
教学目标:
1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重难点:
使学生理解算理,正确总结、应用计算法则。
教学难点:
使学生理解整数除以分数的算理。
教学过程:
一、复习
1、复习整数除法的意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)
2、口算下面各题
×3×××6
二、新授
1、教学例1
(1)出示插图及乘法应用题,学生列式计算:100×3=300(克)
(2)学生把这道乘法应用题改编成两道除法应用题,并解答。
A、3盒水果糖重300克,每盒有多重?300÷3=100(克)
B、300克水果糖,每盒100克,可以装几盒?300÷100=3(盒)
(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。
×3=(千克)÷3=(千克)÷=3(盒)
(4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。
2、巩固分数除法意义的练习:P28“做一做”
3、教学例2
(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的*均分成2份,并通过操作得出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的*均分成2份,每份是这张纸的。
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
(4)如果把这张纸的*均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、练习
÷3÷20÷5÷6
四、总结
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说?
板书设计:
分数除以整数
甲数÷乙数(0除外)=甲数×乙数的倒数
(1)300÷3==100(2)÷3=×==
分数除以一个数(0除外)等于分数乘这个数的倒数。
分数除以整数教学设计6
分数乘分数教案
教学目标:
知识与技能:理解分数乘分数的意义,掌握分数乘分数的计算法则。
过程与方法:经历解决问题和计算的过程,体验归纳推理的学习方法。
情感态度与价值观:感受数学与生活之间的联系,激发学生学习数学的兴趣,养成勤于思考的良好习惯。
教学重点:
掌握分数乘分数的计算法则。
突破方法:
引导学生分析,解决实际问题,组织学生合作探究,讨论归纳计算法则。
教学难点:
推导算理,总结法则。
教法与学法:
教法:情境教学
学法:小组合作,学习交流。
教学过程:
一、情境引入:
1、小明请小强到家里做客,请小强吃西瓜,先切了一半留给自己的父母,两人吃的各占了西瓜一半的一半,问小明吃了整个西瓜的几分之几?
师:该怎么列式
前面我们学习的是整数与分数与分数相乘,这题都是分数乘分数,你能写出这样的算式吗?
设计意图:创设情境,激发学生求知欲望。
2、观察这些算式,认为哪一些算式算起来会容易些?
二、探索算法:
(一)几分之一乘几分之一
1、请学生选择几道几分之一乘几分之一乘法算式,尝试计算。
2、汇报计算情况,提出计算方法。
3、举例说明或验证计算方法及结果。
4、小组内交流验证计算方法及结果。
5、组际交流。
6、小结几分之一和几分之一相乘的计算方法:分子相乘的积作积的分子,分母相乘的积作积的分母。
(二)一般分数相乘
1、小组合作探究:
(1)猜想一般分数相乘的计算方法。
(2)请举例验证。
(3)准备汇报。
2、组际交流
3、总结分数乘分数的计算法则。分数乘分数:分子相乘的积作积分子,分母相乘的积作的分母。
4、沟通所有分数乘法的计算方法。以前还学过哪些关于分数的乘法?他们有什么共同点?
1、学生独立写出几个算式。汇总到黑板上。
2、学生观察得出:几分之一和几分之一相乘。
3、举例说明或验证计算方法及结果。
4、小组交流个体学习情况
5、组际交流可能出现的方法:
(1)把分数化成小数计算
(2)根据分数乘法的意义
6、学生按要求活动。
7、组际交流:学生可能出现的情况
(1)可以看作是——
(2)画图:把长方形的纸先用阴影表示出,再表示阴影部分的,然后打开看一看得到的阴影是整个长方形的几分之几。
(3)化成小数计算。(能化成小数的)
三、教师辅导
1、教师进行个别辅导,并了解学生的计算及验证情况。
2、教师指导和参与讨论。
四、反馈提高,巩固计算
出示例4,读题。
师:怎样列式?依据什么列式?
由学生讨论得到:根据“速度×时间=路程”,列出3/10×2/3。
让学生独立计算。通过请学生在黑板演算或用投影展示学生的演算过程及结果交流计算情况,强调能约分的要先约分再乘,这样可以使计算简便。并结合学生的演算情况说明约分的书写格式。
课堂总结:今天我们学习了什么?分数乘分数怎样计算?
学生独立完成“做一做”。
附:教学设计说明
《分数乘分数》一课是河北省九年义务教育教材小学数学第十一册第二单元的内容,是在学习了分数整数、整数乘分数,理解了分数乘法的意义后进行学习的。分数乘法在掌握了法则以后,计算并不复杂,因此在本节课中我们力图体现“让学生自己提出、验证计算方法,培养探究问题能力,体现算法多样化”的总体思路。
一、充分开放教学过程,促进学生主动参与
整节课设计为三个阶段,每个阶段都提供了学生充分参与的机会。引入阶段,在情景的支持下让学生自己提出并确定学习、研究的材料;展开阶段,分两个层次让学生提出“分数乘分数”的计算方法,并通过独立思考、合作研究来展示、证明自己的计算方法,使研究过程体现开放与自主,努力营造个性化的学习方式,以促进各个层次学生的交流与发展。
二、充分展示知识的发生、发展与联系,使学生经历学习过程
《分数乘分数》一课,从情景入手,把较复杂的“分数乘分数”的计算方法,设计成用学生自己创造的方法来展示和验证,有利于学生更好地获得和理解计算方法。课堂的“展开”阶段,从解决“几分之一与几分之一相乘”到“两个一般分数相乘”,力图体现由浅入深、由易到难的探究过程。使学生在“探究算法——操作验证——交流评价——法则统整”等的一系列活动中经历“分数乘分数”计算法则的形成过程,感受知识间的内在联系,同时渗透数学研究的思想方法,培养学生探索问题的能力。
三、以数学知识为载体,体现《课程标准》精神,促进学生探索
本节课的设计力图以“分数乘分数”这一数学知识为载体,通过学生主动参与、发现问题、解决问题的探究过程,使学生的数学认知结构建立在自己的实践经验和主动建构之上,从而转变学生的学习方式,体现课程改革的精神。教学大纲上明确指出:“小学数学教学要使学生既长知识又长智慧,要遵循学生的认识规律,重视学生获取知识的思维过程。”通过学生自己动手研究,推导“分数乘分数”的计算方法,并进行展示交流。呈现多样化的算法,能较好地使学生感受到学习的成功和研究的乐趣,即使学生在理解掌握方法的现时提高解决问题的能力,又利于学生形成良好的数学情感与价值观。
分数除以整数教学设计7
一、设疑激趣
(一)下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
(二)计算下面各题,说说怎样算?
++=++=
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试
同学之间交流想法:++==3××3=
×3这个算式表示什么?为什么可以这样计算?
教师板书:++=×3=
二、自主探索
(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
1.读题,说说块是什么意思?
2.根据已有的知识经验,自己列式计算
三、交流、质疑
(一)学生汇报,并说一说你是怎样想的?
方法1:++===(块)
方法2:×3=++====(块)
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的.
区别:一种方法是加法,另一种方法是乘法.
教师板书:++=×3
(三)为什么可以用乘法计算?
加法表示3个相加,因为加数相同,写成乘法更简便.
(四)×3表示什么?怎样计算?
表示3个的和是多少?
++====,用分子2乘3的积做分子,分母不变.
(五)提示:为计算方便,能约分的要先约分,然后再乘.
四、归纳、概括:
(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?
求几个相同加数的和的简便运算.
(二)分数乘整数怎样计算?
用分子和分母相乘的积做分子,分母不变
五、巩固、发展
(一)巩固意义
1.改写算式
+++=()×()
+++++++=()×()
2.只列式不计算:3个是多少?5个是多少?
(二)巩固法则
1.计算(说一说怎样算)
×4×6×21×4×8
思考:为什么先约分再相乘比较简便?
2.应用题
(1)一个正方体的礼品盒,底面积是*方米,要想将这个礼品盒包装起来,至少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画配上镜框,需要木条多少米?
(三)对比练习
1.一条路,每天修千米,4天修多少千米?
2.一条路,每天修全路的,4天修全路的几分之几?
六、课后作业
(一)的3倍是多少?的10倍是多少?
(二)一个正方形的边长是米,它的周长是多少米?
(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?
七、板书设计
分数乘整数
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.
例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
用加法算:++===(块)
用乘法算:×3=++====(块)
答:3人一共吃了块.
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.
教学设计点评
1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为教学重点服务服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。
2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。
分数除以整数教学设计8
教学目标:
1、使学生理解一个数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。
2、使学生在探索整数除以分数、分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。
3、培养学生迁移、概括的能力。
教学重点:
掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算。
教学难点:
理解分数除法的意义,体会数学知识之间的内在联系。
教学准备:
展台。
教学过程:
一、创设情境,激趣导入。
谈话:同学们,你们喜欢布艺手工劳动吗,会做什么呀?看我们布艺小组同学做的书信袋,既环保又实用,多么有创意。
展台出示信息窗2的第一幅图:兴趣小组的同学用2米布做书信袋。一个小书信袋需要1/5米,一个大书信袋需要2/5米。 【设计意图:本节课以发生在学生身边的生活事例“布衣兴趣活动”为素材,创设了布衣兴趣小组“做书信袋和小裙子”这一情境。】
二、自主探索,获取新知。
1、说说你了解到的信息,能提出什么问题?学生找出信息,提出问题。
【设计意图:教学时,教师充分利用信息窗,引导学生理清图中所包含的各种信息,让学生思考由这些信息,你能提出什么问题?这样从学生的身边发生的事件作为起点创设问题情境,极大地激发学生的求知欲,促使学生积极主动地参与学习。】
2、红点问题一:2米布可以做多少个小书信袋?引导学生自己观察。
师:要求2米布可以做多少个小书信袋,就是求2米里面有多少个1/5米。怎样列算式?
师:这个算式表示的意义就是:2里面有几个1/5。
【设计意图:注重给学生提供积极思维,自主探索的空间,有利于培养学生的创新精神和实践能力。】
3、整数除以分数的计算方法。
小组讨论,如何计算呢?引导学生用线段图帮助理解。师展示分析过程。“1”里面有5个1/5,2里面就有(2×5)个。也就是10个1/5。也就是2÷1/5=2×5=10(个)。所以结果等于10。
师:那么,5和1/5有什么关系呢?
【设计意图:让学生独立解决并画图理解算理,再在小组里共同分析、讨论,解释计算方法。由于学习是开放性的,学生自由探索知识的形成过程,可能会出现多种推导的方法,这时老师可补充肯定各种不同的推导方法,重点借助直观图,利用学生的知识基础,交流讲解,最后引导学生发现计算方法,这一环节,尊重每一个学生的个性特征,允许不同的学生从不同的角度认识问题,采用不同的方式表达自己的想法,用不同的知识与技能解决问题,体现了“人人学有价值的数学”这一教学理念。】
4、红点问题二:2米布能做几个大书信袋?小组讨论交流,得出结果。 2÷2/5=2×5/2=5(个)
从而我们也可以得出:2除以2/5也就是2乘2/5的倒数。
5、绿点问题。
让学生独立解决,集体交流算式的意义和算法。
小组讨论,归纳总结:一个数除以分数,等于这个数乘分数的倒数。
【设计意图:这一步骤是分数除以分数的意义和计算方法的教学,可放手让学生独立解决,最后小组讨论,归纳整数除以分数算式的意义和算法。由于前两个例题的教学,学生很容易得出分数除以分数等于分数乘后一个分数的倒数。知识的获得是在学生已有知识的基础上,通过旧知识的学习感悟得到的,这样教学有利于学生迁移,类推能力的培养。】
三、自主练习。
1、自主练习第1题。
练习时,要培养学生认真仔细的学习习惯。教师可适当补充类似的练习,以逐步提高学生的计算水*。
2、自主练习第2题。
让学生独立做在练习本上,然后集体订正。练习时,要让学生解答完第1小题后,讨论数量关系,在明确“燃烧总量除以时间等于每小时的燃烧量”的基础上,再来解答第2小题。这样便于学生通过练习,全面巩固知识。
四、全课小结。
1、今天我们学习了什么新知识?
2、一个数除以分数的计算法则是什么?
3、计算一个数除以分数应注意什么?
分数除以整数教学设计9
【学情分析】
六年级学生是在掌握了整数除法的意义、分数乘法的意义,计算及其应用基础上来学习分数除法的。高年级学生喜欢通过动手来解决相关问题,而不是老师简单的灌输。分数除法算理的探索与理解是教学的一个难点,根据小学生的思维特点采用手脑并用、数形结合的策略加以突破更能激发学生学习的乐趣。
【教材解读】
例1以折纸活动为载体,利用数形结合的方法帮助学生理解分数除以整数的算理。教材分两个层次编排,先解决分数的分子能被整数整除的特殊情况;再引出分子不能被整数整除的情况。教材体现了让学生经历由特殊到一般的探索过程,进而理解把一个书*均分成几份,求其中的一份,也就是求这个数的几分之一输多少,渗透转化的数学思想。
【教学内容】
教科书第30页,做一做,34页练习七1-3题.【
教学目标】
1.通过观察实物图,理解分数除法的意义。
2.理解分数除以整数的计算法则的推导过程,会正确的进行分数除以整数计算。 3.培养学生归纳概括的能力。
【教学重点】
理解并掌握分数除以整数的计算方法。
【教学难点】
渗透转化的的数学思想,培养学生的归纳概括能力。
【教具准备】
长方形纸几张不同颜色彩笔几支幻灯片
【教学过程】
一、孕伏新知1.投影仪出示:
①找出下列各数的倒数。
20怎样很快地找到一个不为零的整数的倒数?
②根据10×3=30改写成两道除法算式。
改写的依据是什么?
2.引导学生说说整数除法的意义。
[设计意图:充分利用学生已有知识,以旧引新,为学习新知做好铺垫。]
二、动手操作,探究新知1.学生尝试列算式÷2。 2.独立思考÷2的计算方法。 3.汇报交流。
方法一:÷2=0.8÷2=0.4 454545方法二:÷2=454?25=
254.通过折一折的方法验证这道题的答案。
(1)拿出准备好的白纸,请学生利用手中的白纸尝试解决或验证答案。
(2)先将这张*均分成6份,再将其中的4份用颜色表示出来。
(3)再将涂了色的部分*均分成2份,其中的一份用另一种颜色表示出来,这其中的一份就是这张纸的几分之几。
(4)看着自己手中的纸,请学生说出正确答案。
[设计意图:让学生借助自己动手折叠的长方形或根据自己在征数除法理解的意义的基础上对分数除法意义的理解解决分数除法的问题,一方面帮助学生进一步体会分数除法的意义,另一方面让学生体会分数除法的计算方法,也为总结分数除法的计算法则做必要准备。] 5.思考:如果分数不能化成有限小数时怎么办?我们每一道分数除法分子不能将分母除尽时怎么办?
学生根据教师的质疑继续深入探究分数除以整数的计算方法。 6.根据我们的折纸过程,你发现计算÷2,就是计算它的几分之
451244几?所以我们不难发现方法三:÷2=× =
25557.出示问题:如果把这张纸的*均分成3份,每份是这张纸的几分之几?
4
5(1)生独立列出算式。
(2)选择算法。
通过观察:0.8÷3除不尽,4÷3也除不尽,应该选择方法三。
(3)学生独立计算。
(4)组织交流。
板书:÷3=×=
454514 315 8.比较三种方法,进行方法优化。
方法一和方法二都有一种局限性,方法三是运用转化的思想把分数除法转化成分数乘法来计算具有一般性,是较好的一种计算方法。
9.总结分数除以整数的计算方法。
是不是所有的整数都能当除数?为什么?小结计算方法。板书:分数除以整数(0除外),等于分数乘这个整数的倒数。
[设计意图:再次给学生创设探究的空间,让学生自己想计算的方法,自己总结计算的方法,自己运用计算方法,尽量把学生推向学习的主体地位。教师仅在学生的疑惑处或计算的关键处给以提示或强调。]
三、巩固练习,夯实基础1.教材30页的“做一做”。
练习时让学生独立完成,师巡回指导。 2.教材34页“练习七”第1题。
先让学生在书上独立填空,再说说根据什么填空的。 3.教材34页“练习七”第2题。
先组织学生观察左右两题之间的关系,交流后让学生填一填。 4.教材34页“练习七”第3题。找学生上黑板完成,集体订正。
四、拓展练习,小结提升
1.一瓶饮料的容量是升,升分一瓶,能分几瓶?
生独立思考,列出算式,由题目可以得出5瓶的结论,主要思考÷=5的计算过程,拓展引出分数除以分数的计算方法。
2.今天我们通过动手折一折、算一算的方法总结出了分数除法的计算方法:分数除以一个不为零的整数,就是乘这个数的倒数。
【板书设计】
分数除以整数方法一:÷2=0.8÷2=0.4 方法二:÷2=454?255414541445=251244方法三:÷2=× =2555分数除以整数(0除外),等于分数乘这个整数的倒数。
分数除以整数教学设计10
教学目标:
1、引导学生在具体的情景中借助已有的经验理解分数除法的意义并掌握分数除法的计算方法,能正确计算分数除以整数。
2、通过富有启发性的问题情景和探索性的学习活动,引导学生主动参与、独立思考、合作交流,形成计算技能。
教学重难点教学重点:分数除法意义的理解和分数除以整数的算法的探究。
教学难点:分数除以整数的算法的探究。
教具准备:课件,*均分成5份的长方形纸一张。
设计意图教学过程特色设计:
通过富有启发性的问题情景和探索性的学习活动,引导学生主动参与、独立思考、合作交流,形成计算技能
一、复习
复习整数除法的意义
引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
根据已知的乘法算式:5×6=30,写出相关的两个除法算式。
二、新授
(一)初步理解分数除法的意义。
1、如果将一盒重千克的水果*均分成5份,求其中一份是多少千克,该怎样计算?
学生试着列出算式。
引导观察:这几道算式之间有怎样的关系?分数除法是什么样的运算?它的意义和整数除法的意义是否相同?
2、归纳概括分数除法的意义。
(二)分数除以整数。
1、出示例1、引导学生分析并用图表示数量关系。
问:求每份是这张纸的几分之几,怎样列式?
2、列式计算。
学生折一折,算一算。
3、理清思路。
学生说思路
4、总结分数除以整数的计算方法。分数除以整数等于分数乘这个数的倒数。
三、练习
第30页做一做
四、作业练习
教材P34第1、3、4题。
五、总结
今天我们学习了哪些内容?
板书设计:
略
《假分数化成整数和带分数》听课教学反思3篇(扩展6)
——五年级数学下册《真分数和假分数》的课后教学反思3篇
五年级数学下册《真分数和假分数》的课后教学反思1
上周教学了第四单元的二课时《真分数和假分数》。这节课是一堂概念教学课,主要任务是让学生明确真分数、假分数的概念及将分数分为这两大类的分类标准是什么,初步了解分类标准在分类活动中起着十分重要的作用。
所以教学中我紧紧扣住直观图形和直线上的点表示的分数,使学生从直观上清晰地认识到真分数小于1,假分数等于或大于1的特征,这样学生概括真、假分数的概念和特征即为水到渠成。
整节课的内容相对来说还是比较简单的,学生掌握起来也比较轻松。在课后的作业里有一个这样的题目:请你用自己的话来理解分子比分母大或者分子和分母相等的分数叫假分数。
有个同学写了一句很有意思的答案:我觉得分子不应该比分母大,因为妈妈总比儿子大。我忍俊不禁,随即在第二天的课上对此答案随性发挥。
联想到在教学分数各部分名称时说到分数线下面的是分母,做为母亲他高高的托着自己的孩子——分子,所以分子在上,分母在下。因为孩子的年龄都要比母亲小,所以分子小于分母是符合实际情况的,那么这样的分数我们叫做真分数,而如果孩子和母亲一样大,或大于母亲了,那么这种情况就不符合实际,这样的分数就叫做假分数。说到这里孩子们都笑了,我知道他们从心里真正领悟了!
五年级数学下册《真分数和假分数》的课后教学反思2
《真分数和假分数》是一节概念课,是继三年级分数的初步认识后的一节关于分数知识的延伸课。在学习了分数的意义后,学生明确了分数就是“表示把单位1*均分成若干份表示其中的一份或几份”。真分数和假分数虽然在分数的意义上是一致的,但是假分数在意义的理解上却是对原来分数意义的一次飞跃。假分数的意义理解在本节课上应该是一个难点,相对于以前真分数的意义学生根深蒂固,但假分数表示什么?在单位1不够取得时候怎么理解?在生活中假分数又有怎样的现实意义?所以,这节课既是分数意义的延伸,又是对原来分数理解的一次补充。
在教学过程中,我首先通过让学生叙述自己表示出的分数的意义,回答分数的分数单位及有几个这样的分数单位等内容,为学生学习真分数和假分数奠定了基础。
其次充分发挥教师主导和学生主体的作用。用提问的方式启发学生思考,让学生进行合作探究;然后依据真分数和假分数的分类,引导学生在已经掌握的分数概念的基础上,通过观察、比较、抽象、概括,从特殊到一般,理解并掌握真分数、假分数的概念。
最后通过观察数轴上各点所表示的分数,引导学生将真分数和假分数与1作比较,使学生直观清晰地认识到真分数小于1、假分数等于或大于1的特征,进一步理解了真分数和假分数之间的联系和区别。
遗憾的是时间把握的不够好,拖堂了,我想主要是这样几个方面的原因:
1、一开始,提问分数的意义处就冷场了,主要是昨天没有上课,是前天学的内容,学生遗忘了。
2、在教学5个的地方,引导学生经历了这个过程,拓展的比较多,花的时间也比较多。
3、在数轴上表示分数,把真分数、假分数与1比较的时候,由于学生的基础及对分数意义的理解还不够扎实,所花的时间也比较多。
还可能在设计、语言、课堂处理方面还存在一定的.问题,请老师们多提宝贵意见!
五年级数学下册《真分数和假分数》的课后教学反思3
本节课我采取合作探究与自主学习相结合的教学方式,重视学生对概念的建构和理解过程,其教学设计有以下几个特点:
一、多种教学策略和方法的融合,引导学生经历概念的建构过程。
富有实效的课堂教学,往往是多种教学策略的有机融合,本节课的教学中,主要凸显了以下几种教学策略:
1、关注学生知识起点,有效激疑。
孩子对于分数的了解并不是一无所知的,因此在课的伊始,从学生熟知的分数入手,并借助于这个可待定分数,不仅可以唤起学生对所熟悉的部分与整体关系的分数的回忆,同时又可类推出分子比分母大的分数,这种分数的出现,为下一环节的学习和探究创设了问题情境,引起了认知矛盾冲突,有效的激活了学生思维和学习兴趣。
2、把握教材设计意图,探究释疑。
纵观整个章节的编排体系,真分数、假分数内容教材的编排意图,除了让孩子们了解真分数与假分数的概念外,更重要的是让学生跳出前面在分数认识中形成的“分数表示部分与整体关系”这一思维,形成分数也表示两个量之间的份数关系,所以在让学生感知如何用圆中的阴影来表示时,根据学生已有的经验基础,通过充分的交流、讨论,有效的突破了单位“1”的限制,让学生明白分子比分母大的分数,其表示的具体量已超过了单位“1”,需要再增加这样的一份,借助于教师有效的引领,让学生明白了单位“1”的大小、*均分成的份数与分数有着密不可分的关系,再次强化了二者的重要性。之后,一个有效地设问,把谁看作单位“1”?充分估计到了学生认知上的误区,通过对比、观察、辨析,让学生深刻感悟到了同样的图形,单位“1”的不同,得出的分数竟存在如此大的差异,从而强调了单位“1”的重要性。至此,借助于一波又一波的矛盾冲突和问题情境,在无疑—有疑—释疑中深化了学生思维,加深了学生对假分数意义的理解和体验,增强了学生的思辨意识,有效的突破了难点。
二、重视数形结合,渗透数学思想方法。
教师注重了通过图形语言揭示概念的意义和特征。教学中,教师引导学生借助于圆形图和数轴,将“图”与真分数、假分数的特征相对照进行解释、分析和说理,使学生在观察和对比中感悟概念的意义和特征,体会数形结合在解决问题中的便捷性、科学性的优势。
三、练习设计注重坡度和梯度,有效提升了学生的思维水*。
本节课教师根据学生实际,设计了三个不同层次的练习。第一个层次,基础练习,主要是让学生巩固对真、假分数的认识。第二个层次,提高性练习,考虑到学生在数轴上描点是个难点,有意识的将它分解为几个层次,先是判断真、假分数,接着借助于对单位“1”的认识引入数轴,然后让学生猜测真、假分数在数轴上的位置,随后在老师的引导下共同描点。这个题目囊括了本节课相关的所有知识点,将它们有机地联系在了一起,同时进行了有效提升和难点的突破。第三个层次,开放性练习,首先是让学生在繁杂的分数中按照一定的观察顺序发现规律,接着让学生接触不确定因素:(a≠0),a<6时,是真分数,a≥6时,是假分数。(a≠0),a>6时,是真分数,a≤6时,是假分数。(a≠0、b≠0),a>b时,是真分数,a≤b时,是假分数。为的就是将学生思维不断提升,从形象的呈现分数判断到学生形成抽象的符号化思想。整个练习的设计由易到难,由具体到抽象,层层递进,体现了循序渐进的原则,符合学生的认知规律。
总之,本节课的教学设计充分体现了学生的主体作用,为学生提供了合作交流、自主探究的学习环境,由表及里、由直观到抽象,加深了对真分数、假分数意义和特征的认识,建立了完整的分数概念。既有效地关注了过程性目标的达成,同时又将教师的“引”与学生的“学”有机的融合在一起,促进了学生的发展和对知识的建构。
《假分数化成整数和带分数》听课教学反思3篇(扩展7)
——分数与整数相乘教学反思3篇
分数与整数相乘教学反思1
《分数与整数相乘》是在学生掌握整数乘法、理解分数的意义和基本性质,以及同分母分数加法的基础上进行教学的,这是学生首次接触分数乘法。本节课所要教学的内容,虽然对于部分学生来说也许并不陌生,估计有学生可能已经会计算分数与整数相乘的算式。但这节课的学习对于他们来说并不多余,因为很多学生可能凭借经验只知道怎么算,不知道为什么这样算。尤其是对于分数和整数相乘时,为什么直接将分子与整数相乘的积作分子,而分母不变,学生不一定明确。因此,这节课不能仅仅满足学生会算,更重要的是要让学生理解分数与整数相乘的含义,关注学生理解分数与整数相乘的算理,理解和掌握为什么可以这样算?这样做的理由是什么?要让学生不仅知其然,更重要的是知其所以然。
本节课的教学,教者紧紧围绕:理解意义————明确算理————巩固提高————形成技能,这几个方面来进行教学的。虽然课堂教学还算顺利,但通过本节课的教学,也反映出了一些不足。下面就这节课的教学谈谈一些教后感想。
1.充分利用教材资源,挖掘算法和算理
计算教学的课注重的是讲明算理,掌握算法,一般对于学生来说,是比较单调和枯燥的,为了避免单纯的机械计算,我创设了学生做绸花的实际情境,将计算教学与解决问题有机结合。学生通过观察涂色的方格图,列出算式,从而有利于理解分数乘法的意义。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数的简便运算,又可以启发学生用加法算出×3的结果。但在教学中,我对一米绸带的这幅图没有充分地利用好,我只是在导入时让学生说了说,怎样在图中表示3个米,其实在这里,应该依据图形结合,借助图形来说明算理,最后教师再归纳到分数乘整数的意义角度,让学生理解分数乘法的意义与整数乘法的意义是相同的,就是求几个相同分数的和。
2.连续追问,深入理解算理
在计算教学中,往往有很多教师只关注教会学生如何算,对为什么可以这样算缺乏足够的重视。因此,造成由于算理不清而导致的只会机械算,不会灵活运用的状况。因此,在这部分的教学中,我通过连续追问,让学生深入理解算理,让学生明白分数乘整数为什么分母不变,分子与整数相乘作分子的道理。这样做能够很好的突出重点,突破难点,让学生知其然,知其所以然。
3.关注细节,注重数学的严谨
在教学先约分再计算的算法时,教者改编了教材,设计了一道比较大的整数与分数相乘的题目,对比之下简单与复杂一目了然,起到了很好的效果。但是在展示的学生计算过程中,出现了约分格式不规范的情况,有些同学在约分时,把约好的数写在原来数的右边,我忘了提醒学生要把约好的数写在原来数的上方,假如教师注重一下学生书写习惯的培养,这节课将更完善。
分数与整数相乘教学反思2
本节课教学时,我充分发挥了学生的积极主动性,真正地体现了学生的主体地位,教师真正地成为课堂的组织者和引导者。在例1第一问的教学中,先让学生尝试涂色练习,然后通过猜想——观察——发现规律,在小组中交流自己的发现,而在例1的第二问得教学时我采用大胆放手,让学生独立尝试完成,再让自己看书校对,培养学生充分利用课本资源,学会学习,最后集体补充完善分数与整数相乘的计算方法。整节课磕磕碰碰,在学生的对比、发现、交流中学习,同时也反映出一些不足。下面我就这节课的教学谈谈一些感想。
1、充分利用教材资源,概括计算方法和挖掘算理
计算教学的课堂中注重的是讲明算理,掌握算法,一般对于学生来说,是比较单调和枯燥的,为了避免单纯的机械计算,我创设了学生做绸花的实际情境,将计算教学与解决问题有机结合。学生通过观察、涂条形图验证口算3/10×3的答案,再列出算式计算验证,从而有利于理解分数乘法的意义,又渗透了猜想——验证——应用的数学思想。这样处理,既有利于学生主动地把整数乘法的意义推广到分数乘法中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算,又可以启发学生用加法算出3/10×3的结果。在教学中,我抓住一米绸带的这幅图先让学生涂出3/10米,然后涂出3个3/10米,再列式计算,图形结合,借助图形来说明算理,理解几个相同加数的和用乘法来计算。
在计算教学中,往往有时我们往往会只关注教会学生如何计算,对为什么可以这样计算缺乏足够的重视,而造成了由于算理不清而导致的只会机械计算,不会灵活运用的状况。因此,在这部分的教学中,我通过图文结合,引导观察,巧妙地用色笔作记号,再适时追问,引导学生深入理解算理,让学生明白分数乘整数为什么分母不变,分子与整数相乘的积作分子的道理。这样做能够很好地突出重点,突破难点,让学生知其然,更知其所以然。最后学生归纳、补充,初步感知分数与整数相乘的.计算方法。
2、实现教学的个性化,发展学生的能力。
相比去年教学本课时,我又做了大胆地尝试,备这节课时又想起去年执教镇教研课的情景,用同年级的老师的话是“课堂教学流畅,一气呵成,要想有所突破,会很难”。细想感觉学生的积极性是很高,算理也理解得很透彻,但总有种学生是“牵得过多,主观能动性发挥得不太好,所以在教学例1第二问时我改变了原来的方式,大胆放手,先让学生独立尝试计算做5朵这样的绸花要用绸带多少米?再打开书本互相补充学习,并观察比较哪一种方法更好?最后交流完善分数与整数相乘的计算方法(能先约分的要先约分再计算),并互相质疑。其用意是在利用身边的资源,培养学生学会学习,并能将自己的发现用语言表达出来。为“课堂教学过关”做了一次大胆地尝试,但情况不是十分理想,特别是学生的数学语言表达能力不强。在今后的教学中,我要更多地关注学生小组合作学习能力,交流能力,自学能力,引导学生学会学习数学。
通过这节课的改革尝试,我深深体会到:在*时的课堂教学中,我们应该大胆放手让学生去探索、归纳,充分地相信孩子,把学习的主动权交还给孩子,教师要具有引发学生思考的能力,促使形成合作、探索、质疑、互助的良好学习氛围。
《假分数化成整数和带分数》听课教学反思3篇(扩展8)
——分数乘整数的课件3篇
分数乘整数的课件1
【教学目标】
知识与能力:
1.使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
2.使学生能够应用分数乘整数的计算法则,比较熟练地进行计算。
过程与方法:
首先复习整数乘法的意义和三个相同分数相同的计算方法,为学习分数乘整数做好准备。然后,通过例题,结合直观图,采用加法与乘法对照的方法,教学分数乘整数的意义和计算方法。
情感态度价值观:
通过观察比较,引导学生探求知识的内在联系,注重培养学生的推理能力,发展学生的思维。
【教学重难点】
1.使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
2.引导学生总结分数乘整数的计算法则。
【教具、学具】
教具准备:多媒体课件、刻度尺。
学具准备:画图纸、刻度尺、铅笔等相关绘图工具。
【教学过程】
一、铺垫孕伏
(一)出示复习题。
1. 口答:
5个12的和是多少?
10个23的和是多少?
4个0.5的.和是多少?
2. 整数乘法的意义是什么?
3.计算:
计算 时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
(二)引出课题。
象上面的题求几个相同的分数相加的和有没有简便的方法呢?这就是今天我们要学习的新课——分数乘法。(板书课题:分数乘整数)
二、探究新知。
(一)教学分数乘整数的意义。
出示例1,小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个,3人一共吃多少个?
指名读题。
1.分析演示:
每人吃 个蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。
问:一个人吃了 个,三个人吃了几个 个?使学生从图中看到三个人吃了3个 个。让学生用以前学过的知识解答3个人一共吃了多少个?(教师在3个扇形下面画出大括号并标出?块)订正时教师板书: + + = = = (个),(教师将3个双层扇形图片拼成一个一块蛋糕的 图片)
2.观察引导:
这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书: 。再启发学生说出 表示求3个 相加的和。
3.比较 和12×5两种算式异同:
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:
相同点:两个算式表示的意义相同。
不同点: 是分数乘整数,12×5是整数乘整数。
4.概括总结:
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
《假分数化成整数和带分数》听课教学反思3篇(扩展9)
——真分数和假分数教学反思 (菁选5篇)
真分数和假分数教学反思1
真分数和假分数这节课是在学习分数的意义、分数与除法的关系的基础上进行教学的,为后面学习把假分数化成带分数或整数奠定基础。
成功之处:
重视真分数和假分数概念的形成。在例1的教学中,通过涂色表示出分数,让学生通过比较每个分数的分子和分母的大小,从而发现这些分数是比1大,还是比1小。由此得出真分数的概念,即分子比分母小的分数叫做真分数。真分数小于1。在例2的教学中,首先由真分数1/3、2/3的意义引入,然后问学生如果表示这样的3份,用分数表示是多少,如果表示这样的4份呢?1个圆还能表示出来吗,应该怎么办呢?这时学生想到再用一个圆来表示,取其中的一份,就表示4/3。在教学假分数时应把重点放在假分数的意义上,让学生明确是把一个圆看作单位“1”,把它*均分成3份,表示这样的4份的数;7/4表示把一个圆看作单位“1”,*均分成4份,表示这样的7份;11/5表示把一个圆看作单位“1”,*均分成5份,表示这样的11份。通过观察这些假分数的分子与分母的大小,从而发现假分数的分子和分母相等,分子比分母大,假分数大于1或等于1。
2.区分11/5和11/15的意义。学生在表示11/5时,由于受图形的影响,受原来学习分数的影响,导致学生会把3个圆看作单位“1”,*均分成15份,表示这样11份的数。通过对比这两个分数,既可以从图中发现错误,也可以利用分数的意义发现问题,还可以从真分数和假分数的特点辨别。
不足之处:
个别学生在练习中还是出现了假分数写成真分数的情况。
改进措施:
重点教学假分数的意义,特别是要注意假分数是把一个圆看作单位“1”,让学生重点说一说每个假分数所表示的意义。
真分数和假分数教学反思2
真分数和假分数是在学生已经学过分数的意义和分数与除法的关系的基础上进行教学的。只有学习了真分数和假分数,学生才能比较全面的理解分数的概念。
本课我主要采用自主探究、合作交流的教学方法,在教学中为学生提供充分的探索与交流的时间,让学生在观察、操作、分类、比较、交流等活动中,自己概括出真分数和假分数的意义。因为真分数和假分数是一节概念教学课,概念的形成是认识的发展过程。在教学真分数和假分数时,我先让学生通过观察图形的涂色部分,以及学生根据分数的意义理解假分数与真分数的内在联系,体会用假分数表示数量以及数量之间关系的合理性、科学性。然后让学生从观察大量的分数出发,自主探究,以自己的感性经验为基础,对这些分数进行分类、比较,并在小组中交流自己的想法,从而形成表象,进而以归纳的方式抽象出真分数和假分数的本质属性,从而获得了初级概念,然后教师在引导学生,把这一概念的本质属性推广到同一类事物之中,通过这样的教学方法就是学生准确地理解概念,牢固地掌握概念,正确地运用概念。同时学生通过自主探索与合作交流,提升了思维水*,提高抽象、概括等能力,而在整个教学过程中教师只是一个学习的组织者、引导者与合作者。从学生练习反馈来说,学生对真分数和假分数意义掌握不错,能正确区分真分数和假分数,从而达到这节课的目标。
当然教学中也有不足,例如,在练习题“练一练”第1题,用分数涂色部分。其中有两个图学生做错了,有一个图是7/4学生写成了7/8;另一个图应该是6/3学生写成6/6。通过反思,学生会出现这样的错误,是因为学生没有真正理解什么是单位“1”。还有出示数轴,让学生把真分数和假分数标在数轴上。由于学生对数轴的认识不是很清晰,把数轴跟线段混淆了,因此在独立完成此题时有一定难度。有学生只是象在线段上标分数一样,找到一个点就标上了,而没有考虑数轴上的.数字是逐渐增大的,比如,1/3应该标在1/6后面,可有些学生在0-1之间分的6份中,把1/3标在了1/6的前面。如果在此题的处理上,先让学生弄清楚数轴和线段的区别,并且教师讲解其中两个分数如何在数轴上找点,这样,学生就会少走弯路,而且对数轴也会有一个充分的认识。
一节课下来,通过自己的反思,给今后的教学积累下宝贵的经验,取长补短。
真分数和假分数教学反思3
真分数和假分数是在学生已经学过分数的意义和分数与除法的关系的基础上进行教学的,课上充分发挥学生的主体作用,让学生在课前预习的基础上合作探究,引导学生在已经掌握的分数概念的基础上,通过观察、比较、抽象、概括,从特殊到一般,理解并掌握真分数、假分数的概念,自己得出判断和结论。
既然真分数和假分数是以分数意义为基础进行教学的,那么这堂课离不开分数的意义,而五(下)的分数意义是用单位“1”来说明的,因此,我认为该内容的教学和分数的意义有着密切的关系。教材安排的例题也是利用学生对分数意义和分数单位的已有认识,通过在图形里涂色,引出对3/4、5/4的认识。再利用对假分数的初步认识,通过在图形里涂色表示6/4、7/4和8/4,9/4进一步丰富对假分数的认识。最后在此基础上,引导学生对比较上面例题中每个分数分子和分母的大小进行分类,形成并明确真分数和假分数的含义。
涂色是认识真分数假分数重要直观手段。小学生的认知往往建立在直观之上的,涂色学生的操作活动,操作的过程就是直观感知的过程。在涂3/4的过程中体会到:把一个圆看做单位“1”,*均分成4分,涂这样的3份是3/4。同样,涂4/4和5/4也是如此。
分数单位是认识真分数假分数的重要点。教材要求学生先在下面的图形中涂色表示5个1/4,然后要求学生用分数表示几分之几。对假分数的初步认识的锲子就是分数单位,1/4有1个1/4,3/4中有3个1/4,3个1/4就是3/4;4/4中有4个1/4,4个1/4就是4/4。照此推想5个1/4当然是5/4,5/4有5个1/4。
分类是形成真分数假分数的重要环节。在学生初步认识真分数假分数的基础上,引导学生对比较上面的每个分数分子和分母的大小进行分类,从而形成真分数和假分数的含义。
课后反思自己的课堂依然存在很多的不足:
1.教学能力还需提高
虽然我能及时给学生纠正错误,但还是显得有些急躁,没有让学生准确用数学语言表达,忽略了学生表达能力的培养。
2.自学指导争取做到精、简、细
本节课的自学指导虽然体现了自学方法、自学时间、自学内容,但感觉容量太大,问题过多,设计不够精细,学生在自学中容易忽略个别问题,而书中小精灵提的问题没有在指导中体现出来,造成学生对真分数和假分数的特征没有真正理解,只能照着书回答。
3.应变能力和调控能力还需提高。
真分数和假分数教学反思4
本节课我采取合作探究与自主学习相结合的教学方式,重视学生对概念的建构和理解过程,其教学设计有以下几个特点:
一、多种教学策略和方法的融合,引导学生经历概念的建构过程。
富有实效的课堂教学,往往是多种教学策略的有机融合,本节课的教学中,主要凸显了以下几种教学策略:
1、关注学生知识起点,有效激疑。
孩子对于分数的了解并不是一无所知的,因此在课的伊始,从学生熟知的分数入手,并借助于这个可待定分数,不仅可以唤起学生对所熟悉的部分与整体关系的分数的回忆,同时又可类推出分子比分母大的分数,这种分数的出现,为下一环节的学习和探究创设了问题情境,引起了认知矛盾冲突,有效的激活了学生思维和学习兴趣。
2、把握教材设计意图,探究释疑。
纵观整个章节的编排体系,真分数、假分数内容教材的编排意图,除了让孩子们了解真分数与假分数的概念外,更重要的是让学生跳出前面在分数认识中形成的“分数表示部分与整体关系”这一思维,形成分数也表示两个量之间的份数关系,所以在让学生感知如何用圆中的阴影来表示时,根据学生已有的经验基础,通过充分的交流、讨论,有效的突破了单位“1”的限制,让学生明白分子比分母大的分数,其表示的具体量已超过了单位“1”,需要再增加这样的一份,借助于教师有效的引领,让学生明白了单位“1”的大小、*均分成的份数与分数有着密不可分的关系,再次强化了二者的重要性。之后,一个有效地设问,把谁看作单位“1”?充分估计到了学生认知上的误区,通过对比、观察、辨析,让学生深刻感悟到了同样的图形,单位“1”的不同,得出的分数竟存在如此大的差异,从而强调了单位“1”的重要性。至此,借助于一波又一波的矛盾冲突和问题情境,在无疑—有疑—释疑中深化了学生思维,加深了学生对假分数意义的理解和体验,增强了学生的思辨意识,有效的突破了难点。
二、重视数形结合,渗透数学思想方法。
教师注重了通过图形语言揭示概念的意义和特征。教学中,教师引导学生借助于圆形图和数轴,将“图”与真分数、假分数的特征相对照进行解释、分析和说理,使学生在观察和对比中感悟概念的意义和特征,体会数形结合在解决问题中的便捷性、科学性的优势。
三、练习设计注重坡度和梯度,有效提升了学生的思维水*。
本节课教师根据学生实际,设计了三个不同层次的练习。第一个层次,基础练习,主要是让学生巩固对真、假分数的认识。第二个层次,提高性练习,考虑到学生在数轴上描点是个难点,有意识的将它分解为几个层次,先是判断真、假分数,接着借助于对单位“1”的认识引入数轴,然后让学生猜测真、假分数在数轴上的位置,随后在老师的引导下共同描点。这个题目囊括了本节课相关的所有知识点,将它们有机地联系在了一起,同时进行了有效提升和难点的突破。第三个层次,开放性练习,首先是让学生在繁杂的分数中按照一定的观察顺序发现规律,接着让学生接触不确定因素:(a≠0),a<6时,是真分数,a≥6时,是假分数。(a≠0),a>6时,是真分数,a≤6时,是假分数。(a≠0、b≠0),a>b时,是真分数,a≤b时,是假分数。为的就是将学生思维不断提升,从形象的呈现分数判断到学生形成抽象的符号化思想。整个练习的设计由易到难,由具体到抽象,层层递进,体现了循序渐进的原则,符合学生的认知规律。
总之,本节课的教学设计充分体现了学生的主体作用,为学生提供了合作交流、自主探究的学习环境,由表及里、由直观到抽象,加深了对真分数、假分数意义和特征的"认识,建立了完整的分数概念。既有效地关注了过程性目标的达成,同时又将教师的“引”与学生的“学”有机的融合在一起,促进了学生的发展和对知识的建构。
真分数和假分数教学反思5
xx省xx市实验小学的xx老师执教一课,朱老师提出要“帮助学生理解真分数和假分数的意义,准确把握真分数和假分数的本质特征”。课前朱老师做出这样的思考:“学生怎样才算真正理解了真分数和假分数的意义?首先要结合具体的情境,让学生经历假分数的形成过程,感受并认同假分数产生和存在的合理性。其次,从学习基础分析,当学生面对一个真分数时,已经能从多个不同的角度去理解,并用自己的方式作出解释。比如,可以从部分与整体(一个物体或一个群体)的层面进行解读,也可以理解为两个量之间的一种关系,即一个量相当于另一个量的几分之几。我认为,只有当学生看到一个假分数时,能利用已有的经验从不同的维度去解读它,对它的理解程度能与真分数等同了,才算真正实现了假分数意义的构建。”
笔者在课前调查中发现,学生们对于分数的认识大致如此:讲一个整体*均分成几份,这样的一份或者几份可以用用分数表示。比如一个月饼*均分成4份,有这样子的2份可以用分数四分之二来表示。但是,学生的认知中还是趋向于认同分子小于分母的情形。这就是学生实际和教学内容之间现实的而又不可回避的矛盾。那怎样解决矛盾?
教学片断:
师:你能用自己喜欢的方式表示出四分之一吗?
学生个性化画图。
教师和学生从四分之一开始,每一次增加一个分数单位,学生很自然也很顺利地完成。
师:看着这5个分数,你有觉得谁最特殊呢?
生:四分之五。因为分子比分母还要大。
师:还有谁比较特殊呢?
生:四分之四。分子和分母一样大。
师:像这样子分子大于分母或者分子等于分母的分数,叫做假分数。
师:前两天的学习我们对分数已经有了新的认识。你能在括号内填上自己喜欢的数,并画图表示这个分数吗?
笔者在课堂巡视时看到了大多数的学生都会选择比4小或者等于4的数,并能正确画图表示。
可以看出,学生对于分数的认识有了质的飞跃,即“学生认识到假分数在形式上与真分数是不一样的,但其实质都是分数单位累加的结果。”
推荐访问:带分数 假分数 整数 《假分数化成整数和带分数》听课教学反思3篇 《假分数化成整数和带分数》听课教学反思1 把整数或带分数化成假分数教学反思