当前位置:首页 > 专题范文 > 教案设计 > 2023年七年级数学《有理数乘方》教案设计4篇

2023年七年级数学《有理数乘方》教案设计4篇

发布时间:2023-07-28 19:50:02 来源:网友投稿

下面是小编为大家整理的2023年七年级数学《有理数乘方》教案设计4篇,供大家参考。

2023年七年级数学《有理数乘方》教案设计4篇

作为一名人民教师,有必要进行细致的教案准备工作,借助教案可以更好地组织教学活动。来参考自己需要的教案吧!小编为朋友们整理了4篇《七年级数学《有理数的乘方》教案设计》,亲的肯定与分享是对我们最大的鼓励。

有理数的乘方教案 篇一

教学目标

1、利用10的乘方,进行科学记数,会用科学记数法表示大于10的数;(重点)

2、能将用科学记数法表示的数还原为原数。(重点)

教学过程

一、情境导入

在悉尼举行的国际天文学联合会大会上,天文学家指出整个可见宇宙空间大约有700万亿亿颗恒星,这个数字比地球上所有沙漠和海滩上的沙砾总和数量还要多。

如果想在字面上表示出这一数字,需要在“7”后面加上22个“0”。即约为“70000000000000000000000”颗。

生活中,我们还常会遇到一些比较大的数。例如:

1、据报载,20xx年我国将发展固定宽带接入新用户25000000户。

2、全球每年大约有577000000000000m3的水从海洋和陆地转化为大气中的水汽。

3、拒绝“餐桌浪费”刻不容缓,据统计,全国每年浪费粮食总量约50000000000千克。

像这些较大的数据,书写和阅读都有一定的难度,那么有没有这样一种表示方法,使得这些大数易写、易读、易于计算呢?

二、合作探究

探究点一:用科学记数法表示大数

例1 我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨,将167000用科学记数法表示为(  )

A.167×103 B.16.7×104

C.1.67×105 D.1.6710×106

解析:根据科学记数法的表示形式,先确定a,再确定n,解此类题的关键是a,n的确定。167000=1.67×105,故选C.

方法总结:科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值。

例2 20xx年3月发生了一件举国悲痛的空难事件——马航失联,该飞机上有中国公民154名。噩耗传来后,我国为了搜寻生还者及找到失联飞机,花费了大量的人力物力,已花费人民币大约934千万元。把934千万元用科学记数法表示为______元(  )

A.9.34×102 B.0.934×103

C.9.34×109 D.9.34×1010

解析:934千万=9340000000=9.34×109.故选C.

方法总结:对用带“万”“千万”“亿”等单位的数用科学记数法表示时,要化成不带单位的数,再用科学记数法表示。

探究点二:将用科学记数法表示的数转换为原数

例3 已知下列用科学记数法表示的数,写出原来的数:

(1)2.01×104;(2)6.070×105;(3)-3×103.

解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可;(3)将-3扩大1000倍即可。

解:(1)2.01×104=20100;

(2)6.070×105=607000;

(3)-3×103=-3000.

方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数。

三、板书设计

科学记数法:

(1)把大于10的数表示成a×10n的形式。

(2)a的范围是1≤|a|<10,n是正整数。

(3)n比原数的整数位数少1.

教学反思

本节课的特点是实际性强,和我们的日常生活联)小编●(系紧密,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、讨论、交流等活动。把学生被动接受知识的过程变为主动探究发现的过程,使知识的发生与发展在每一位学生各自的体验和自主学习中逐渐展现。

《有理数的乘方》优秀教案 篇二

教学目标

1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算;

2、知道底数、指数和幂的概念,会求有理数的正整数指数幂;

3、会用科学记数法表示较大的数。

教学重点

1、有理数乘方的意义,求有理数的正整数指数幂;

2、用科学记数法表示较大的数。

教学难点

有理数乘方结果(幂)的符号的确定。

教学过程(教师)

问题引入

手工拉面是我国的传统面食。制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折(每次对折称为一扣),如此反复操作,连续拉扣若干次后便成了许多细细的面条。你能算出拉扣6次后共有多少根面条吗?

乘方的有关概念

试一试:

将一张报纸对折再对折……直到无法对折为止。你对折了多少次?请用算式表示你对折出来的报纸的层数。

你还能举出类似的实例吗?

有理数的乘方:同步练习

1、对于式子(-3)6与-36,下列说法中,正确的是()

A.它们的意义相同

B.它们的结果相同

C.它们的意义不同,结果相等

D.它们的意义不同,结果也不相等

2、下列叙述中:

①正数与它的绝对值互为相反数;

②非负数与它的绝对值的差为0;

③-1的立方与它的平方互为相反数;

④±1的倒数与它的平方相等。其中正确的个数有()

A.1B.2C.3D.4

《有理数的乘方》优秀教案 篇三

学习目标

知识与技能:使学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;正确进行有理数的乘方运算。

过程与方法:经历探索乘方有关规律的过程,领会重要的数学建模思想,归纳思想,形成数感,符号感,发展抽象思维。

情感态度价值观:

鼓励猜想,倡导参与,学会倾听,建立自信心。

学习重点:理解有理数乘方的意义和表示,会进行乘方运算。

学习难点:幂,底数,指数的概念及其表示。处理好负数的乘方运算。用乘方解决有关实际学习重点问题。

学习方法:

探究归纳法

过程设计:

一自主研学

1求n个()的运算叫做乘方,乘方的结果叫做()

2在式子an(n为正整数)中,()叫底数,()叫指数,()叫幂。

3负数的奇次幂是(),负数的偶次幂是(),正数的任何次幂(),0的任何次幂()。

二合作互学

知识点1:有关乘方的概念

1(--3)4表示的意义是(),,底数是(),指数是(),结果是()

243的底数是()指数是(),表示的意义是(),结果等于()。

知识点2乘方的运算

3计算0.0012=();(--?)=()

知识点3乘方的读法

4(--2)5读作();---25读作()

教学引入

师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

动画演示:

场景一:正方形折叠演示

师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

[学生活动:各自测量。]

鼓励学生将测量结果与邻近同学进行比较,找出共同点。

讲授新课

找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

动画演示:

场景二:正方形的性质

师:这些性质里那些是矩形的性质?

[学生活动:寻找矩形性质。]

动画演示:

场景三:矩形的性质

师:同样在这些性质里寻找属于菱形的性质。

[学生活动;寻找菱形性质。]

动画演示:

场景四:菱形的性质

师:这说明正方形具有矩形和菱形的全部性质。

及时提出问题,引导学生进行思考。

师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

[学生活动:积极思考,有同学做跃跃欲试状。]

师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

“有一组邻边相等的矩形叫做正方形。”

“有一个角是直角的菱形叫做正方形。”

“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

三自觉练学

1(--3)3=(),--52=()

2立方等于8的数是(),平方等于16的数是()

3一个数的平方等于这个数本身,此数为(),一个数的立方等于这个数本身,此数为(),一个数的平方等于这个数的立方,此数为()。

4(--3×5)2=();--(--2)4=()

5(--1)2012=()

6下列说法正确的是()

A一个有理数的平方是非负数。B一个有理数的平方是正数。

C一个有理数的平方大于这个数。D一个有理数的平方大于这个数的相反数。

7把--(--?)(--?)(--?)(--?)写成乘方的形式是()

8下列各对数中,值相等的是()

A--32与--23B--23与(--2)3C--32与(--3)2D(--3)×2与--3×22

9计算下列各题

(1)(--?)3(2)--(--3)3(3)8×(--?)2

(4)(--1)100×(--1)3(5)(--?)3×(--16)

10阅读材料并解决问题

你能比较两个数20112012和20122011的大小吗?

为了解决这个问题,先把问题一般化,即比较nn+1和(n+1)n(n为大于1的正数)的大小。然后从分析n=1,n=2,,n=3~~这些简单情况入手发现规律,猜想一般结论。

(1)计算比较

12--------2123-------3234--------4345-------5456---------65

(2)从上面各小题结果归纳,可以猜想什么结论?

(3)根据归纳猜想的结论比较20112012和20122011的大小。

有理数的乘方教案 篇四

一、学习目标

1、能确定有理数加、减、乘、除、乘方混合运算的顺序;

2、掌握含乘方的有理数的混合运算顺序,并掌握简便运算技巧;

3、偶次幂的非负性的应用。

二、知识回顾

1、在2+ ×(-6)这个式子中,存在着3种运算。

2、上面这个式子应该先算乘方、再算2 、最后加法。

三、新知讲解

1、偶次幂的非负性

若a是任意有理数,则(n为正整数),特别地,当n=1时,有。

2、有理数的混合运算顺序

①先乘方,再乘除,最后加减;

②同级运算,从左到右进行;

③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

四、典例探究

1、有理数混合运算的顺序意识

【例1】计算:-1-3×(-2)3+(-6)÷

总结:做有理数的混合运算时,应注意以下运算顺序:

先乘方,再乘除,最后加减;

同级运算,从左到右进行;

如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

练1计算:-2×(-4)2+3-(-8)÷ +

2、有理数混合运算的转化意识

【例2】计算:(-2)3÷(-1 )2+3 ×(- )-0.25

总结:将算式中的除法转化为乘法,减法转化成加法,乘方转化为乘法,有时还要将带分数转化为假分数,小数转化为分数等,再进行计算。

练2计算:

3、有理数混合运算的符号意识

【例3】计算:-42-5×(-2)× -(-2)3

总结:

在有理数运算中,最容易出错的就是符号。

符号“-”即可以表示运算符号,即减号;又可以表示性质符号,即负号;还可以表示相反数。

要结合具体情况,弄清式中每个“-”的具体含义,养成先定符号,再算绝对值的良好习惯。

练3计算:

4、有理数混合运算的简算意识

【例4】计算:[1 -( )× ]÷5

总结:对于较复杂的一些计算题,应注意运用有理数的运算律和一定的运算技巧,从而找到简便运算的方法,以便有效地简化计算过程,提高运算速度和正确率。

练4计算:[2 -( )×2]÷

5、利用数的乘方找规律

【例5】瑞士中学教师巴尔末成功地从光谱数据……中得到巴尔末公式从而打开了光谱奥妙的大门。

题中的这组数据是按什么规律排列的?

请你按这种规律写出第七个数据。

总结:

这是一道规律探索题。规律探索题是指给出一列数字或一列式子或一组图形的前几个,通过归纳、猜想,推出一般性的结论。

探索规律的时候,要结合学过的知识仔细分析数据特点,乘方经常出现在有理数的规律题中,所以要从乘方的角度出发考虑。

练5

五、课后小测一、选择题

1、下列各式的结果中,最大的为( )。

A. B.

C. D.

2.32015的个位数字是( )。

A.3 B.9 C.7D.1

3、已知,那么(a+b)20xx的值是( )。

A.-1 B.1 C.-32015 D.32015

二、填空题

4.a与b互为相反数,c与d互为倒数,x的绝对值为2,则x2+(a+b)20xx+(-cd)20xx=________.

三、解答题

5、计算:

(1) ;

(2) 。

6、计算:

(1) ;

(2) 。

7、计算:

(1) ;

(2) 。

8、计算:

(1) ;

(2) 。

9、已知与互为相反数,求:

(1) ;(2) 。

典例探究答案:

【例1】【解析】原式=-1-3×(-8)+(-6)÷

=-1-(-24)+(-54)

=-1+24-54

=-31

练1【解析】原式=-2×16+3-(-8)÷ + =-32+3-(-32)+ =3

【例2】【解析】原式=(-2)3÷(- )2+ ×(- )-

=-8÷ +(- )-

=-8× +(- )-

=-

练2【解析】原式=9×( )-16×(-2)+ × = +32+2=

【例3】【解析】原式=-16+1-(-8)

=-16+1+8

=-7

练3【解析】原式=-4-(-27)×1-(-1)

=-4+27+1

=24

【例4】【解析】原式=[ -( )×(-64)]÷5

=[ -( )]÷5

=( -20)×

= × -20×

= -4=-3

练4【解析】原式=[ -( )]÷

=( - )×8

=19-2- +3

=

【例5】【解析】(1)观察这组数据,发现分子都是某一个数的平方,分别为32,42,52,62……分母和分子相差4,由此发现排列的规律。即:第n个数可以表示为。

(2)第七个数据为。

练5【解析】n+1/n+2=(n+1)2/n+3

课后小测答案:

一、选择题

1.C

2.C

3.A

二、填空题

4.3

三、解答题

5、(1)原式=-16-16-1-1=-34;

(2)原式= =-30.

6、(1)-27;(2)31.

7、(1)原式=16×(-4)+5=-64+5=-59;

(2)原式= =0.

8、(1)原式=-64-16-9×( )=-64-16+7=-73;

(2)原式= 。

9、解:由题意,得。

又因为,,

所以,,得a=2,b=-1.

所以(1) ;

(2) 。

它山之石可以攻玉,以上就是小编为大家整理的4篇《七年级数学《有理数的乘方》教案设计》,希望对您的写作有所帮助。

推荐访问:乘方 有理数 教案设计 七年级数学《有理数乘方》教案设计4篇 有理数的乘方教案 有理数的乘方教案人教版

版权所有:袖书文档网 2002-2024 未经授权禁止复制或建立镜像[袖书文档网]所有资源完全免费共享

Powered by 袖书文档网 © All Rights Reserved.。备案号:鲁ICP备20026461号-1