当前位置:首页 > 专题范文 > 教案设计 > 2023年九的分解教案7篇【优秀范文】

2023年九的分解教案7篇【优秀范文】

发布时间:2022-12-12 09:25:02 来源:网友投稿

九的分解教案7篇九的分解教案篇1活动目标:1、在游戏活动中归纳、总结、学习3、4的组成,知道把3分成两份有2种份法,知道把4分成两份有3种份法。2、在操作活动中不断探索数的多种下面是小编为大家整理的九的分解教案7篇,供大家参考。

九的分解教案7篇

良好得教案对教学内容得选择、教学方法有很强的操作性,优质的教案是老师能够呈现一堂精彩课堂的依据,下面是小编为您分享的九的分解教案7篇,感谢您的参阅。

九的分解教案篇1

活动目标:

1、在游戏活动中归纳、总结、学习3、4的组成,知道把3分成两份有2种份法,知道把4分成两份有3种份法。

2、在操作活动中不断探索数的多种分法,并学会记录。懂得交换两个部分数的位置合起来总数不变。

3、在游戏中学习3、4的组成,发展动手能力及观察思维能力。

活动准备:

教具:

贴绒数字1、2、3、4及分合号、背景图(3辆汽车和4个圆点图)黑板。

学具:

幼儿人手一套操作材料,记号笔一支,一个盘子里装有雪花片3片。

活动过程:

1、创设情境,引起幼儿兴趣。游戏:"我们都是好朋友"。

2、初步探索3的组成。

(1)小组活动:幼儿自由操作"今天,我们要来玩"雪花片"的游戏,好不好?那请小朋友每次都拿3个雪花片分成2份,试试看你能分出多少种不同的分法。"幼儿操作,老师巡视。提醒幼儿拿3个雪花片分成2份。

(2)集体活动:汽车开来啦

老师小结:3分成两份有2种分法,3可以分成1和2,2和,1和2;2和1合起来都是4。

3、初步探索4的组成。

(1)幼儿操作:"分颜色宝宝圆点",在操作活动中不断探索4的多种分法,并学会记录。

(2)让幼儿给4个颜色圆点宝宝分成2份。你们会怎么分?有几种分法?

(3)老师写出4 的分合式: 4分成1和3,还有3和1这两组数都有一个相同的数字几?它们的数字相同,但是它们的位置不同,只要知道了一种分法后,将两个部分数的位置交换一下,就是另一种分法,左边的数后面一个数比前面一个数多1,右边的数后面一个数比前面一个数少1,左右两边的数合起来都是4。

(4)老师小结:4分成两份有三种分法,4可以分成1和3,3和1,还有2和2,1和3,3和1,还有2和2它们合起来都是4。

4、幼儿操作练习,巩固游戏----"花朵和树叶":3的组成3朵花朵分成2份,4的组成4片树叶分成2份。

5、集体讲评幼儿操作练习,进一步巩固3、4的组成。

活动反思数的组成与分解就是加法和减法以及部总关系应用题的基础和潜伏性知识点,所以在教学这部分内容时要突出分解和组成的过程。从中我体会到,教学不能只光教学当下的知识点,更要为以后的教学服务。

九的分解教案篇2

因式分解

教材分析

因式分解是进行代数式恒等变形的重要手段之一,因式分解是在学习整式四则运算的基础上进行的,它不仅仅在多项式的除法、简便运算中等有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三解函数式的恒等变形带给了必要的基础,因此学好因式分解对于代数知识的后续学习,具有相当重要的好处。由于本节课后学习提取公因式法,运用公式法,分组分解法来进行因式分解,务必以理解因式分解的概念为前提,所以本节资料的重点是因式分解的概念。由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对初一学生还比较生疏,理解起来有必须难度,再者本节还没涉及因式分解的具体方法,所以理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法是教学中的难点。

教学目标

认知目标:(1)理解因式分解的概念和好处

(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

潜力目标:由学生自行探求解题途径,培养学生观察、分析、决定潜力和创新潜力,发展学生智能,深化学生逆向思维潜力和综合运用潜力。

情感目标:培养学生理解矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。

目标制定的思想

1.目标具体化、明确化,从学生实际出发,具有针对性和可行性,同时便于上课操作,便于检测和及时反馈。

2.课堂教学体现潜力立意。

3.寓德育教育于教学之中。

教学方法

1.采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习用心性。

2.把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高潜力。

3.在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,用心参与到教学中来,充分体现了学生的主动性原则。

4.在充分尊重教材的前提下,融教材练习、想一想于教学过程中,增设了由浅入深、各不相同却又紧密相关的训练题目,为学生顺利掌握因式分解概念及其与整式乘法关系创造了有利条件。

5.改变传统言传身教的方式,利用计算机辅助教学手段进行教学,增大教学的容量和直观性,提高教学效率和教学质量。

教学过程安排

一、提出问题,创设情境

问题:看谁算得快?(计算机出示问题)

(1)若a=101,b=99,则a2—b2=(a+b)(a—b)=(101+99)(101—99)=400

(2)若a=99,b=—1,则a2—2ab+b2=(a—b)2=(99+1)2=10000

(3)若x=—3,则20x2+60x=20x(x+3)=20x(—3)(—3+3)=0

二、观察分析,探究新知

(1)请每题想得最快的同学谈思路,得出最佳解题方法(同时计算机出示答案)

(2)观察:a2—b2=(a+b)(a—b)①的左边是一个什么式子?右边又是什么形式?

a2—2ab+b2=(a—b)2②

20x2+60x=20x(x+3)③

(3)类比小学学过的因数分解概念,(例42=2×3×7④)得出因式分解概念。

板书课题:§7。1因式分解

1.因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。

三、独立练习,巩固新知

练习

1.下列由左边到右边的变形,哪些是因式分解?哪些不是?为什么?(计算机演示)

①(x+2)(x—2)=x2—4

②x2—4=(x+2)(x—2)

③a2—2ab+b2=(a—b)2

④3a(a+2)=3a2+6a

⑤3a2+6a=3a(a+2)

⑥x2—4+3x=(x—2)(x+2)+3x

⑦k2++2=(k+)2

⑧x1=(x—1+1)(x1)

⑨18a3bc=3a2b·6ac

2.因式分解与整式乘法的关系:

因式分解

结合:a2—b2=========(a+b)(a—b)

整式乘法

说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。

结论:因式分解与整式乘法正好相反。

问题:你能利用因式分解与整式乘法正好相反这一关系,举出几个因式分解的例子吗?

(如:由(x+1)(x—1)=x2—1得x2—1=(x+1)(x—1)

由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)

四、例题教学,运用新知:

例:把下列各式分解因式:(计算机演示)

(1)am+bm(2)a2—9(3)a2+2ab+b2

(4)2ab—a2—b2(5)8a3+b6

练习2:填空:(计算机演示)

(1)∵2xy=2x2y—6xy2

∴2x2y—6xy2=2xy

(2)∵xy=2x2y—6xy2

∴2x2y—6xy2=xy

(3)∵2x=2x2y—6xy2

∴2x2y—6xy2=2x

五、强化训练,掌握新知:

练习3:把下列各式分解因式:(计算机演示)

(1)2ax+2ay(2)3mx—6nx(3)x2y+xy2

(4)x2+—x(5)x2—0。01(6)a3—1

(让学生上来板演)

六、变式训练,扩展新知(计算机演示)

1。若x2+mx—n能分解成(x—2)(x—5),则m=,n=

2.机动题:(填空)x2—8x+m=(x—4),且m=

七、整理知识,构成结构(即课堂小结)

1.因式分解的概念因式分解是整式中的一种恒等变形

2.因式分解与整式乘法是两种相反的恒等变形,也是思维方向相反的两种思维方式,因此,因式分解的思维过程实际也是整式乘法的逆向思维的过程。

3.利用2中关系,能够从整式乘法探求因式分解的结果。

4.教学中渗透对立统一,以不变应万变的辩证唯物主义的思想方法。

八、布置作业

1.作业本(一)中§7。1节

2.选做题:①x2+x—m=(x+3),且m=。

②x2—3x+k=(x—5),且k=。

评价与反馈

1.透过由学生自己得出因式分解概念及其与整式乘法的关系的结论,了解学生观察、分析问题的潜力和逆向思维潜力及创新潜力。发现问题,及时反馈。

2.透过例题及练习,了解学生对概念的理解程度和实际运用潜力,最大限度地让学生暴露问题和认知误差,及时发现和弥补教与学中的遗漏和不足,从而及时调控教与学。

3.透过机动题,了解学生对概念的熟练程度和思维的灵敏性、深刻性、广阔性及探研创造潜力,及时评价,及时矫正。

4.透过课后作业,了解学生对知识的掌握状况与综合运用知识及灵活运用知识的潜力,教师及时批阅,及时反馈讲评,同时对个别学生面批作业,能够更及时、更准确地了解学生思维发展的状况,矫正的针对性更强。

5.透过课堂小结,了解学生对概念的熟悉程度和归纳概括潜力、语言表达潜力、知识运用潜力,教师恰当地给予引导和启迪。

6.课堂上反馈信息除了语言和练习外,学生神情也是信息来源,而且这些信息更真实。学生神态、表情、坐姿都反映出学生对教师教学资料的理解和理解程度。教师应用心捕捉学生在知识掌握、思维发展、潜力培养等各方面全方位的反馈信息,随时评价,及时矫正,随时调节教学。

九的分解教案篇3

活动目标:

1、体验将数量是5的物品分成两部分。

2、学习念读5的分合式及算式。

3、发展幼儿逻辑思维能力。

4、培养幼儿边操作边讲述的习惯。

活动准备:

1、"5只兔子头饰",儿歌《小白兔白又白》。

2、1—5数字卡片;分合符号。

3、学具:每个幼儿五颗棋子。

4、《游戏册》第五册第11—12页。

活动过程:

一、预备活动游戏导入:小兔子挖菜。

创设环境:森林里来了兔妈妈和5只小兔子,播放儿歌《小白兔白又白》。教师带领幼儿边念儿歌边做相应的动作出场。小兔子最爱吃萝卜和青菜,兔妈妈请小兔子去挖萝卜和青菜,请小兔子自由的分成两组。请在座的小朋友将分组用分合式表示在黑板上。总共分三次。导出今天的活动内容:学习蒙氏数学《5的分解、组合》。

二、探索操作

1、感知数的分解、组合。每个幼儿发放五颗棋子,请幼儿进行自由分解操作,教师请个别幼儿说出5的分解方法。

2、教师总结幼儿的分组情况。教师演示将五颗从1开始分,将棋子分成两组,教师将组成形式展现在黑板上。并写出算式,教幼儿念读。

3、教师按照第2步完成5的四种分法,让幼儿知道5从1开始分一共有四种分法。

三、游戏体验:

1、游戏一:每个幼儿发放五只猴子的学具进行分解操作,老师巡回指导。

2、游戏二:做《游戏册》第五册第11—12页的活动。

教学反思

1、通过这节课,幼儿了解了5的分解。知道了5的4种分法。幼儿在整个活动中,都很积极的动手操作。在操作中发现知识。同时也培养了幼儿对数学活动的兴趣,锻炼了幼儿的动手操作能力。

2、本节课教师遵循了新纲要提出的以幼儿自主探索学习的过程为主体的新授课方法。

3、幼儿在小组协作方面还有待加强。

4、如果重上本节课,我会根据听课的各位老师提出的建议:加强孩子从物到数的转换方面要多一些练习;数的递增递减环节须多演示。

九的分解教案篇4

教学目标:

1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力.

2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法.

3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想.

教学重、难点:用提公因式法和公式法分解因式.

教具准备:多媒体课件(小黑板)

教学方法:活动探究法

教学过程:

引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解.什么叫因式分解?

知识详解

知识点1 因式分解的定义

把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.

?说明】 (1)因式分解与整式乘法是相反方向的变形.

例如:

(2)因式分解是恒等变形,因此可以用整式乘法来检验.

怎样把一个多项式分解因式?

知识点2 提公因式法

多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).

探究交流

下列变形是否是因式分解?为什么?

(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;

(3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.

典例剖析 师生互动

例1 用提公因式法将下列各式因式分解.

(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);

分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形, 再把b-a化成-(a-b),然后再提取公因式.

小结 运用提公因式法分解因式时,要注意下列问题:

(1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解.

(2)如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。这时注意到(a-b)n=(b-a)n(n为偶数).

(3)因式分解最后如果有同底数幂,要写成幂的形式.

学生做一做 把下列各式分解因式.

(1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2

知识点3 公式法

(1)平方差公式:a2-b2=(a+b)(a-b).即两个数的平方差,等于这两个数的和与这个数的差的积.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).

(2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即两个数的`平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.

探究交流

下列变形是否正确?为什么?

(1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.

例2 把下列各式分解因式.

(1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.

分析:本题旨在考查用完全平方公式分解因式.

学生做一做 把下列各式分解因式.

(1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1).

综合运用

例3 分解因式.

(1)x3-2x2+x; (2) x2(x-y)+y2(y-x);

分析:本题旨在考查综合运用提公因式法和公式法分解因式.

小结 解因式分解题时,首先考虑是否有公因式,如果有,先提公因式;如果没有公因式是两项,则考虑能否用平方差公式分解因式. 是三项式考虑用完全平方式,最后,直到每一个因式都不能再分解为止.

探索与创新题

例4 若9x2+kxy+36y2是完全平方式,则k= .

分析:完全平方式是形如:a2±2ab+b2即两数的平方和与这两个数乘积的2倍的和(或差).

学生做一做 若x2+(k+3)x+9是完全平方式,则k= .

课堂小结

用提公因式法和公式法分解因式,会运用因式分解解决计算问题.

各项有"公"先提"公",首项有负常提负,某项提出莫漏"1",括号里面分到"底"。

自我评价 知识巩固

1.若x2+2(m-3)x+16是完全平方式,则m的值等于( )

a.3 b.-5 c.7. d.7或-1

2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),则n的值是( )

a.2 b.4 c.6 d.8

3.分解因式:4x2-9y2= .

4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.

5.把多项式1-x2+2xy-y2分解因式

思考题 分解因式(x4+x2-4)(x4+x2+3)+10.

九的分解教案篇5

设计背景

学习完《2—5以内各数分解与组成》,这天有位小朋友突然问我:“老师我知道了5的 分解与组成,可是我们马上就六岁了,你能告诉我们6的分解与组成吗?”,对于数的组成孩子们也已经有了一定经验。我尝试让幼儿亲自动手操作、然后记录结果,在教师的引导下寻找分解和组成的规律,让幼儿在玩中学,以达到活动目标与幼儿兴趣最优化的结合。最近我们学了《树的名片》、《树妈妈写信》两首诗歌,孩子们知道秋天到了,树妈妈告诉小动物们要做好过冬的准备,结合诗歌的内容,本次活动以尝试为小动物分房子,学习6的分解组成。

活动目标

1、幼儿通过自主探索动手操作,感知6的分解组成,掌握6的5种分法。

2、在感知数的分解组成的基础上,掌握数组成的递增、递减规律、互相交换的规律。

3、发展幼儿观察力、分析力,记录能力培养幼儿对数学的兴趣。

4、体验数学集体游戏的快乐。

5、培养幼儿比较和判断的能力。

教学重点难点

1、重点:感知整体与部分的关系,学习并记录6的5种分法。

2、难点:总结归纳6以内数的分解和组成规律。

活动准备

教具:大挂图一张(图上两座房子、图两边各有一个画有空格的6的分解式)、6只熊猫卡片、记号笔、记录纸。

学具:幼儿每人一张图(图上两座房子、图两边各有一个画有空格的6的分式)、

每人6只动物卡片、铅笔、橡皮、1—5数字卡若干

活动过程

(一)、开始部分

1、导入:

师:秋天来了,大树妈妈写信忙,写给这写给那,红叶黄叶都写光。

问:都有谁收到了树妈妈的信?(引导小朋友回答都有哪些小动物们收到了树妈妈的信)

问:树妈妈的信上写了些什么?(告诉小动物们要准备过冬)

师:小动物们收到了树妈妈的信,盖了许多新房子,准备在新房子里暖暖和和的度过冬天。

2、出示大挂图引出“6的分解组成”

师:熊猫家分到了两座房子,熊猫家一共有几只熊猫(和幼儿一同点数共六只)出示“6”的数字卡。

师:6只熊猫两座房子怎样分,熊猫们犯了愁,不知该怎样分,有几种分发。请小朋友们说一说

(二)、基本部分

1、请幼儿帮助自己的小动物来分房子。

(1)、幼儿观察自己的学具,说说自己分是什么小动物,点数小动物的数量(6只)

(2)、幼儿将6只小动物分在两座房子里,每分一次将分的结果记录下来

2、请幼儿分别到前面说一说自己分的结果。教师在记录纸上记录幼儿的分法。

3、教师归纳幼儿的分法,总结出“6”的"5种分法。

4、观察幼儿无序的分法,引导学习有序进行“6”的分解组成

(1)、教师演示给6只熊猫分房子,一边分一边和幼儿点数两座房子里小动物的数量,并记录下分的结果,“6”可以分成1和5、2和4、3和 3、4和2、5和1。

(2)、幼儿观察“6”的分解式,初步掌握有序的进行“6”的分解组成,了解数组成的递增、递减规律、互相交换的规律。

5、幼儿第二次为小动物分房子,尝试有序的进行“6”的分解组成,记录每次分的结果。

(三)、结束部分

游戏《找朋友》

幼儿每人挑选一个数字卡(1—5)戴上,伴随找朋友的音乐找到和自己的数字和在一起是“6”的幼儿做朋友。

教学反思

本次活动的设计根据新《纲要》精神,要求幼儿“从生活和游戏中感知事物的数量关系”,还要关注幼儿探索、操作、交流、问题解决和合作的能力。本学期我们大班幼儿已经学过了《2—5以内各数分解与组成》,对于数的组成孩子们也已经有了一定经验。我尝试让幼儿亲自动手操作、然后记录结果,在教师的引导下寻找分解和组成的规律,让幼儿在玩中学,以达到活动目标与幼儿兴趣最优化的结合。活动的设计思路来源最近我们学的《树的名片》、《树妈妈写信》两首诗歌,孩子们知道秋天到了,树妈妈忙着写着信,树妈妈告诉小动物们要做好过冬的准备,结合诗歌的内容,本次活动以尝试为小动物分房子,幼儿通过自主探索动手操作,感知6 的分解组成,掌握6的5种分法,在感知数的分解组成的基础上,掌握数组成的递增、递减规律、互相交换的规律。

活动围绕着给小动物分房子进行,每个幼儿都分到6只小动物,小动物各不相同,有的是6只小狗、有的是6只小猫、还有的是6只犀牛、6只大象、6只狮子等。每个幼儿还一张画有两座房子的图。形象可爱的教具,再加上幼儿乐于帮助小动物分房子的喜悦心情,充分调动了幼儿动手操作、自主探索的积极性。在第一次给小动物分房子并记录的过程中,幼儿通过操作、探索,找出了“6”的五种分法,在展示幼儿分房记录时,有的孩子没有找出了“6”的五种分法,还有的分出的一组数字合起来不是“6”,这是孩子们第一次尝试记录,对没有掌握好的在下一个环节中我会多给予关注。接下来引导观察幼儿无序的分法,教师并演示给6只熊猫分房子,一边分一边和幼儿点数两座房子里小动物的数量,并记录下分的结果,“6”可以分成1和5、2和4、3和3、4和2、5和1,引导学习有序进行“6”的分解组成,幼儿观察“6”的分解式,初步掌握有序的进行“6”的分解组成,了解数组成的递增、递减规律、互相交换的规律。幼儿在第二次为小动物分房子时,掌握了有序的进行“6”的分解组成,记录每次分房的结果。活动在游戏《找朋友》的欢快气氛中结束,幼儿通过探索、操作、交流、在玩中学,学中玩,达到活动目标与幼儿兴趣最优化的结合。

九的分解教案篇6

教学目标

1.知识与技能

了解因式分解的意义,以及它与整式乘法的关系.

2.过程与方法

经历从分解因数到分解因式的类比过程,掌握因式分解的"概念,感受因式分解在解决问题中的作用.

3.情感、态度与价值观

在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.

重、难点与关键

1.重点:了解因式分解的意义,感受其作用.

2.难点:整式乘法与因式分解之间的关系.

3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.

教学方法

采用“激趣导学”的教学方法.

教学过程

一、创设情境,激趣导入

?问题牵引】

请同学们探究下面的2个问题:

问题1:720能被哪些数整除?谈谈你的想法.

问题2:当a=102,b=98时,求a2-b2的值.

二、丰富联想,展示思维

探索:你会做下面的填空吗?

1.ma+mb+mc=( )( );

2.x2-4=( )( );

3.x2-2xy+y2=( )2.

?师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.

三、小组活动,共同探究

?问题牵引】

(1)下列各式从左到右的变形是否为因式分解:

①(x+1)(x-1)=x2-1;

②a2-1+b2=(a+1)(a-1)+b2;

③7x-7=7(x-1).

(2)在下列括号里,填上适当的项,使等式成立.

①9x2(______)+y2=(3x+y)(_______);

②x2-4xy+(_______)=(x-_______)2.

四、随堂练习,巩固深化

课本练习.

?探研时空】计算:993-99能被100整除吗?

五、课堂总结,发展潜能

由学生自己进行小结,教师提出如下纲目:

1.什么叫因式分解?

2.因式分解与整式运算有何区别?

六、布置作业,专题突破

选用补充作业.

板书设计

15.4.1 因式分解

1、因式分解 例:

练习:

15.4.2 提公因式法

教学目标

1.知识与技能

能确定多项式各项的公因式,会用提公因式法把多项式分解因式.

2.过程与方法

使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.

3.情感、态度与价值观

培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.

重、难点与关键

1.重点:掌握用提公因式法把多项式分解因式.

2.难点:正确地确定多项式的最大公因式.

3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

教学方法

采用“启发式”教学方法.

教学过程

一、回顾交流,导入新知

?复习交流】

下列从左到右的变形是否是因式分解,为什么?

(1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);

(3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;

(5)x2-2xy+y2=(x-y)2.

问题:

1.多项式mn+mb中各项含有相同因式吗?

2.多项式4x2-x和xy2-yz-y呢?

请将上述多项式分别写成两个因式的乘积的形式,并说明理由.

?教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.

二、小组合作,探究方法

?教师提问】 多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?

?师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

三、范例学习,应用所学

?例1】把-4x2yz-12xy2z+4xyz分解因式.

解:-4x2yz-12xy2z+4xyz

=-(4x2yz+12xy2z-4xyz)

=-4xyz(x+3y-1)

?例2】分解因式,3a2(x-y)3-4b2(y-x)2

?思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.

解法1:3a2(x-y)3-4b2(y-x)2

=-3a2(y-x)3-4b2(y-x)2

=-[(y-x)23a2(y-x)+4b2(y-x)2]

=-(y-x)2 [3a2(y-x)+4b2]

=-(y-x)2(3a2y-3a2x+4b2)

解法2:3a2(x-y)3-4b2(y-x)2

=(x-y)23a2(x-y)-4b2(x-y)2

=(x-y)2 [3a2(x-y)-4b2]

=(x-y)2(3a2x-3a2y-4b2)

?例3】用简便的方法计算:0.84×12+12×0.6-0.44×12.

?教师活动】引导学生观察并分析怎样计算更为简便.

解:0.84×12+12×0.6-0.44×12

=12×(0.84+0.6-0.44)

=12×1=12.

?教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?

四、随堂练习,巩固深化

课本p167练习第1、2、3题.

?探研时空】

利用提公因式法计算:

0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

五、课堂总结,发展潜能

1.利用提公因式法因式分解,关键是找准最大公因式.在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.

2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.

六、布置作业,专题突破

课本p170习题15.4第1、4(1)、6题.

板书设计

15.4.2 提公因式法

1、提公因式法 例:

练习:

15.4.3 公式法(一)

教学目标

1.知识与技能

会应用平方差公式进行因式分解,发展学生推理能力.

2.过程与方法

经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.

3.情感、态度与价值观

培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.

重、难点与关键

1.重点:利用平方差公式分解因式.

2.难点:领会因式分解的解题步骤和分解因式的彻底性.

3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.

教学方法

采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.

教学过程

一、观察探讨,体验新知

?问题牵引】

请同学们计算下列各式.

(1)(a+5)(a-5); (2)(4m+3n)(4m-3n).

?学生活动】动笔计算出上面的两道题,并踊跃上台板演.

(1)(a+5)(a-5)=a2-52=a2-25;

(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

?教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.

1.分解因式:a2-25; 2.分解因式16m2-9n.

?学生活动】从逆向思维入手,很快得到下面答案:

(1)a2-25=a2-52=(a+5)(a-5).

(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

?教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.

平方差公式:a2-b2=(a+b)(a-b).

评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).

二、范例学习,应用所学

?例1】把下列各式分解因式:(投影显示或板书)

(1)x2-9y2; (2)16x4-y4;

(3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;

(5)m2(16x-y)+n2(y-16x).

?思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.

?教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.

?学生活动】分四人小组,合作探究.

解:(1)x2-9y2=(x+3y)(x-3y);

(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);

(5)m2(16x-y)+n2(y-16x)

=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

三、随堂练习,巩固深化

课本p168练习第1、2题.

?探研时空】

1.求证:当n是正整数时,n3-n的值一定是6的倍数.

2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.

四、课堂总结,发展潜能

运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.

五、布置作业,专题突破

课本p171习题15.4第2、4(2)、11题.

板书设计

15.4.3 公式法(一)

1、平方差公式: 例:

a2-b2=(a+b)(a-b) 练习:

15.4.3 公式法(二)

教学目标

1.知识与技能

领会运用完全平方公式进行因式分解的方法,发展推理能力.

2.过程与方法

经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.

3.情感、态度与价值观

培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.

重、难点与关键

1.重点:理解完全平方公式因式分解,并学会应用.

2.难点:灵活地应用公式法进行因式分解.

3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的.

教学方法

采用“自主探究”教学方法,在教师适当指导下完成本节课内容.

教学过程

一、回顾交流,导入新知

?问题牵引】

1.分解因式:

(1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;

(3) x2-0.01y2.

九的分解教案篇7

活动目标

1、幼儿通过自主探索动手操作,感知6的分解组成,掌握6的5种分法。

2、在感知数的分解组成的基础上,掌握数组成的递增、递减规律。

3、发展幼儿观察力、分析力,记录能力培养幼儿对数学的兴趣。

4、让孩子们能正确判断数量。

5、了解多与少的相对性。

活动重点难点

1、重点:感知整体与部分的关系,学习并记录6的5种分法。

2、难点:总结归纳6以内数的分解和组成规律

活动准备

教具、多媒体课件

活动过程

一、开始部分

1、游戏:对对碰( 复习5的分解和组成)

师:我说5. 幼:我对5

师:5可以分成1和几 幼:5可以分成1和4

(......)

师:5可以分成4和几 幼:5可以分成4和1

2、复习2、3、4、5 的分法与几种,引导出6有5种分法。

3、今天这节活动课,我们一起来学习《6的分解与组成》。(出示课题,领读两遍)

二、基本部分

1、幼儿动手操作积木,探索6的五种分法,并把探索的结果记录在作业纸上。

2、小朋友动手操作,老师巡视指导。

3、请幼儿汇报操作结果。哪位小朋友来把你找到的6的分法告诉老师?

(请小朋友发言,并把他们的记录结果板书到黑板上,并比较)

4、引导幼儿观察6的分合式,有什么发现?(提示:两边的数字有什么变化/)左边的数字一个比一个多1,这叫递增,而右边的数字一个比一个少1,这叫递减。还有两组数字位置互换了,但总数没有变。这就是数的分解组成的规律。

5、请幼儿演示6的5种分法。

6、领读6的分合式。

6可以分成1和5,1和5合起来就是6。

三、结束部分

1、小问号的时间到了:他要检查我们小朋友的学习情况。

(1)(课件出示)填上缺少的数字。

(2)(课件出示)填上缺少点。

2、做游戏:今天这节活动课小朋友们学习了6的分解与组合,知道了6有几种分法?(5种)我们一起再来做个游戏。

老:小朋友,告诉我,6可以分成1和几?

幼:刘老师,告诉你,6可以分成1和5。

..........

四、延伸活动

我们班的小朋友果然很棒,在这么短的时间内就学会了6的分解和组成,现在老师给小朋友们每人布置一个任务,如果小朋友现在有6个桃子,老师想让小朋友分给你的爸爸妈妈吃,那应该怎么分呢?请小朋友回家后分给爸爸妈妈好不好?

活动反思

本次活动的设计根据新《纲要》精神,要求幼儿“从生活和游戏中感知事物的数量关系”,还要关注幼儿探索、操作、交流、问题解决和合作的能力。本学期我们大班幼儿已经学过了《2—5以内各数分解与组成》,对于数的组成孩子们也已经有了一定经验。我尝试让幼儿亲自动手操作、然后记录结果,在教师的引导下寻找分解和组成的规律,让幼儿在玩中学,以达到活动目标与幼儿兴趣最优化的结合。活动的设计思路来源最近我们学的《树的名片》、《树妈妈写信》两首诗歌,孩子们知道秋天到了,树妈妈忙着写着信,树妈妈告诉小动物们要做好过冬的准备,结合诗歌的内容,本次活动以尝试为小动物分房子,幼儿通过自主探索动手操作,感知6 的分解组成,掌握6的5种分法,在感知数的分解组成的基础上,掌握数组成的递增、递减规律、互相交换的规律。

活动围绕着给小动物分房子进行,每个幼儿都分到6只小动物,小动物各不相同,有的是6只小狗、有的是6只小猫、还有的是6只犀牛、6只大象、6只狮子等。每个幼儿还一张画有两座房子的图。形象可爱的教具,再加上幼儿乐于帮助小动物分房子的喜悦心情,充分调动了幼儿动手操作、自主探索的积极性。在第一次给小动物分房子并记录的过程中,幼儿通过操作、探索,找出了“6”的五种分法,在展示幼儿分房记录时,有的孩子没有找出了“6”的五种分法,还有的分出的一组数字合起来不是“6”,这是孩子们第一次尝试记录,对没有掌握好的在下一个环节中我会多给予关注。接下来引导观察幼儿无序的分法,教师并演示给6只熊猫分房子,一边分一边和幼儿点数两座房子里小动物的数量,并记录下分的结果,“6”可以分成1和5、2和4、3和3、4和2、5和1,引导学习有序进行“6”的分解组成,幼儿观察“6”的分解式,初步掌握有序的进行“6”的分解组成,了解数组成的递增、递减规律、互相交换的规律。幼儿在第二次为小动物分房子时,掌握了有序的进行“6”的分解组成,记录每次分房的结果。活动在游戏《找朋友》的欢快气氛中结束,幼儿通过探索、操作、交流、在玩中学,学中玩,达到活动目标与幼儿兴趣最优化的结合。

版权所有:袖书文档网 2002-2025 未经授权禁止复制或建立镜像[袖书文档网]所有资源完全免费共享

Powered by 袖书文档网 © All Rights Reserved.。备案号:鲁ICP备20026461号-1